
heater,duetoth"t"*p".aturedepende.nceoftheresistance'Thisresistance
oscillation at2coleadsto a third harmonic component in the.heater *Yt:':y :

;;"*tr;;:;;pn*" *a amplitude of this third harmonic' the temperature nse

of the heater due to the *odufuting power input can be determined-and'- ftom

it ie , ,ft" *t"""al conductivity of the-fiim can be determined' This is called the 3a;

NANoscALE rrueRcy riurusPoRT AND coNVER('oN

'il

method.
(a) Assuming a power input of the form of A sin (2r'rr)' 

{en1e 
an exPression for

the in-phase Gine tunctoffiJtot*t-pft*" (cosine function) components of the

heatertemperature.ir".e*o-"trtatallthethermalproperties(thermaldiffusivitr.'.,
ttt"t*"f conductivity, anJspecific heat) of the film and the substrate are known' j

(b) One uOaiUonur oiulit"g" oi tftt S' method is that the substrate thermal

conductivity cun te o"t"rminifro* the frequency dependency of.the temperature

response undqr appropriate conditions' Try to identify these conditions'

(c) Another "o*""g" "i 
ti-tt :' -"ntlA is thal tire radiation loss can be mini-

' mized, which is p"di*:;it i-pott*'for low thermal conductivity materials and

measurement at 
"xt 

errr" t"*p"tu*tet (ow and high)' Explain why' 
-

1.s ;;;;;';;;;;;ii'iri,''*i"o'ionof thinfiims: Laserpulsemethod' onemethod

for detennining the trr"""^r diffusivity oi a ttrin fllm is to use a short laser pulsQ

.'..toheatupthefrontsideofthefilmandtomeasurethedecayofthefrontside, 
;il;;#; ty *"rii"irrg ,rle trrung" in reflectance of a probe laser beam (see

fig*" p1.5). ,ihe short pu:ise concentrates temperafure drop in the film rather

thanacrossthesubsnate.Inthiscase,itisnottheabsolutesurfacetemperature
il;;;;;;;r*"Jil the normalized profite of the surface remperature decav

' as a function of ti*"'-not 
" 

ft""ti"g pulse of the following profile' 
'

0

1

4
.ii

't:..
lr

'1,1

irl 
,

,,.!
il,

iij
.i:.

Figure P1.5 Figure forProblem l'5
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. , (b) What are the requirements on the pulse width that will maximize the sensitivity
, for measuring the thermal diffusivity oi th" filrn? I , I ' ,

1.6 Lumped heat capacitance and. time constant Develop a lumped capacitance
. model for a solid sphere at uniform temperature ?;1 that is suddenly immersed

inside a liquid at temperature Io. In such a model, the temperature of the solid is
. ' ' '. assumed to be uniform, and the heat transfer coefficient between the solid object

and the fluid is taken to be ft. Other known parameters are the surface area A,
the volume V, the density p, and specific heat c of the solid.

(a) Derive the differential equation governing the temperature history ofthe solid.. (b) Solve the equation and find the time constant ofthe process.
(c) Invcstigate how the time constant-varies with the diameter of the solid

sphere.

1.7 rsT energy. One unit for energy is the electron-volt (eV). It is the energy differ-
. ence of ohe electron under a potential difference of I v. convert 1 rs T at 300 K
into milli-eV (meV).

1 .8 Thermal conductivity of gases. Estimate the thermal conductivity of air and argon.
as a function of temperature between 300 K and 1000 K at I atm.

1 .9 Mean free path in air. Estimate the mean free path of air molecules as a function
of temperature at atmospheric pressure on the basis of (a) kinetic theory and

i , : ; (b) experimental data on the thermal conductivity and specific heat of air.
1.10 speed of electrons. Estimate the average random speed of an electron gas in a

semiconductor at 300 K.

ffiFher*al conductivity of tiquid. Although the application of kinetic theory to
a dense liquid is questionable, estimate the thermal conductivity of water at

and the results from the kinetic theory. This estimation is typically smaller than
experimental values because, for liquid, potential energy eichange contributes
to heat conduction.

1 .12 Phonon mean free path and relaxation time. Giyen the thermal conductivitv of

the volumetric ipecific heat as 1.66 " 1go y--:11-r 
,. (a) Estimate the phonon mean free path in Si at room temperature from the

, . kinetic theory. In reality, this estimation usually leads to a much shorter mean free
path (about a factor of 10 shorter) than with more sophisticated modeling.

#ffifr,.r's law of dffisfon. Using a simpte kineric argument that is simlar to the
derivation of the Fourier law, derive the Fick law of diffusion, which gives the
mass flux for species i under a concentration gradient as

-dm;
': - dx :

where D is the mass diffusivity, p is the density of the mixture , and mi the local
,mass fraction of species i.

ffifi"rr""i tir;;;;;";'; t'. uriog , simple kineric arsument that is similar to
the derivation of the Fourier law, derive the Newton law of shear stress.(in
one-dimensional form). Hint: consider the momentum exchange across a plane
parallel to the flow.
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Energy quantization.
(a) Assuming a person weighing 100 kg trapped deep inside a two-dimensional

Oitctr t m in wiatf, estimate the lnergy difference between the first and second

quantizedenergylevels.Comparethisenergydifferencewiththethermalfluctuation
energy KBT for T = 300 K.

.6-j ersu*lng an electron of mass 9.1 x 10-31 kg is trapped inside a-two-.

dimensionat infi'nitely high potential well, plot the first and second energy levels

of the electron as a function-of well width between 10 and 100 A. abo rirark the

thermal enetgy KBT onthe graph for ? : 300 K'

Material Waves
and Energy Quantization

Foi macroscopic systems, we take the continuity of many variables for granted, including
the continuity in energy. For example, the heat flux along a rod through conduction,
iiccordirig to the Fourier law, can be continuously varied to arg desired value by con-
holling the temperature difference and the material properties. The microscopic picture
of energy, however, is entirely different. According to quantum mechanical principles,
the permissible. energy levels of matter (electrons, crystals, molecules, and so on) are.
Often dibcontinuous. Differences in allowable energy levels among materials are major
factors that distinguish them from each qther. For example, why is glass transparent in
the visible light range but not silicon, and why are some materials electrical insulators
but others are conductors?
' In this chapter, we introduce the basic quantum mechanical concepts necessary to
appreciate various energy states found in different materials. It should be remembered
that these energy states represent the range of possibilities for the matter but do not tetiJ r t
which state the matter will be in. The latter depends on the temperature, a topic we wiffj ,ll
discuss in chapter4. Imporlant concepts that should be masteied through tlis chapter-
include the wave-particle dualiry, the schrcidinger equation and the meaning of the
wavefunction, the Pauli exclusion principle, quantum states, and degeneracy. Solutions
of the Schrijdinger equation for various simple yet very common potentials will be
given' Key concepts and results of this chapter are summarized in the last section of
the chapter.
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o T=1/v

a fixed time.

iD : Adin

o

Figure 2.1 Traveling wave: (a) temporal variation at a fixed Point; and (b) spatial variation at
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2.1 Basic Wave Characteristics

Let's start by reviewing some basic characteristics of waves. we consider a harmonic

wu* (su"tr u, * "l".tl. or a magnetic field) represented by a sine function traveling

along the positive x-direction,* 
-,irn : , . ,. , i * Lr j, :.t trli..

9:Asin(ri,t-krx)i (2.r)

(J6ue

where A is the amPlitude and i is a unit vector in the y-coordinate direction. Such a

wave has two kinds of periodicity: one in space and one in time. The periodicity in

time is characterized by the frequency u, which equals the inverse of the period in time

The angular frequencY a.r 2n u is often used instead of frequency to avoid writing

the2n'factor. At any fixed point, the temporal variation of the field is a sine function,

as shown in figure 2.1(a). The periodicity along the x-direction is characterized by the

wavelength )"r. Taking a snapshot of the field in space at any fixed time, the field is a

sine function as shown in figure 2.1(b). The inverse ofthe wavelength lil" is called the

wavenumber. The wave represented by eq. (2.1) is propagating along the .r-direction,

but the field is vibrating along the y-direction. When the field vibration direction (the

direction of the electric field oscillation or the atomic dispiacement) is PerPendicular

to the wave propagation direction, the wave is said to be a transverse.wave. When the

wave propagation and the field vibration are along the same direction, the wave is called

a longitudinal wave. The wavevector, k, rePresents the wave propagation direction and

has a magnitude of ft, : 2tt /)"* so that for a wave propagating along the -r-direction as

shown in figure 2.1(b),

For the wave

rJ
I

tWe will discuss waves in more detail in chapter 5. in time. Equation (2.6) is a simple form ofa standing wave. It is a good representation

n:1
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Figure 2.2 Standing waves, with
vanishing amplitude at the boundaries.

(2.4)

I
T

I

n:3n=2

This constant phase plane propagates along the positive -r direction at the speed

dx e)

'oo:E:E:r^,

wave along the positive x
velocity. Eq. (2.1) therefore represents a transverse traveling
-direction. For such a simple wave, the constant phase plane

iS also the constant amplifude plane, as is shown by substituting eq. (2.3) inro (2.1). The
frequency and wavevector of a wave are not independent ofeach other. The relationship-.- between ar and k, or a-l(k), is called the dispersion relation and may be different along tl

tdifferent wavevector directions. For electromagnetic waves, we know that uo is-the
speed oflight, c, and eq. (2.4) gives ot : ck. The dispersion relations for electrons and
phonons are not this simple, as we indicated in table 1.3 and will discuss in more detaii in
chapter 3.

,1. Sometimes, it is convenient to use the compiex representation of the sine and cosine
functions 7 fx'ta,trcnJ

iD = A[sin(arl - k,x) * sin(o/ * k,x)]j : -2Acos(u:r)sin(ft,x)i e.6)

Unlike a traveling wave, eq. (2.6) has fixed nodes in space such that O = 0 at all
limes. Also, we see that the magnitude of O at different locations is a cosine function



46 NANOSCALEENERCYTRANSPORTANDCONVERSIOI

of a wave inside a cavity of length D that requires the amplitude 9f tl-re 
ryave 

to vanish

at the cavity boundaries, that is, o(x : 0) : o(;r : D) : 0' which leads to

Thus, for a stable wave to form inside a cavity that val:ffi;f,:tttely outside the

cavity, the cavity length D must be multiples of the

' fne ggg*dmie*{gcryq is usuqlly proportional to the sqtare of the field'

D .:0

(2.8)

One can point intuitively by imagining that eq. (2.1) represents the

instantaneous displacement of a particle. Its velocity is the derivative of this displacement

with respect to time and the kinetic energy is proportional to the square of this velocity

Classically, the allowable energy of the wave can change continuouslY since there

no limit on the amplitude of vibration. Thi-s picture'

quantum mechanical princiPles.

however, is no longer true under

aa

2.2- Wave Nature of Matter

From the previous section, we see that ffifoi8,#aeer*8d'bgrkif*:fteqpency'rutl
sras4€qglirand its ewgyiisdetermined- by tle rnagnitu& of'the wattve. We also know

tirat a pirtpte is cbaractexized by its eoergy.and momesr$li' Waves and particles are

t*o .J*pi"t.ly different and unrelated phenomena in classical mechanics and electro-

dynamici. In quantum mechanics, however, they are interrelated and are two aspects

of matter.

2.2.1 Wave-Particle Duality of Light " 
: l

Quantum mechanics started with the explanation of blackbody radi_ation and the absorp-

tion spectra of gases. By the end of thg 19th ceirtury classical Newtonian mechanics

and electromagnetism were well established as two separate entities:. Newtonian

mechanics is based on the particle picture of materials, and electromagnetism is based

on the wave picture. Intereiingly, Sir Isaac Newton believed that radiation was particle-

, like in natul rath"r than wavi-titce, as we art more familiar with today' It was ;

the discovery and explanation of interference and diffraction phenomena, from the

workofChristianHuygens(1629_|69|5),ThomasYoung(1773-1829),AugustinJeal.
;.l;.n;id;**-iira'u?i 

",i...r, 
fottowed ty Maxwell (rsst-tazs) an{ tril ceteurateh

equations, that solidified the foundation of the wave nature of the electromagnetic

field.
The Maxwell equations, however, fail to explain the emission and absorption pro-

cesses, such as the experimentally observed fine spectra of absorption in various gases,

and thettackbody radiation (figure 2.3). According to claqsical theory the blackbody

.:i'
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Powef BlackbodyRadiation

Continuum Theory

Experiments

Wavelength
(b)

iigure Z.l (a) An example of the hydrogen emission spectrum for the final state of n = 2.

Classical mechanics fails to explain discrete lines in the emission spectrum. (b) Experimental

measurement on blackbody radiation contradicts the predictions of continuum theory.

emissive power should be proportional to (.]"7)-s, which approaches infinity at short
wavelengths, while the experimental blackbody spectrum is reduced to zero as the wave-
length decreases, as shown in figure 1.7. The discrete absorption lines in the hydrogen
spectrum also cannot be explained by continuum mechanics. To explain blackbody
radiation, Max Planck (1858-194S) introduced a radical hypothesis that the allowable
energy of the electromagnetic field at a frequency up is not continuous, but is a multiple
of the following basic energy unit*

"',{;'*r^llqL* i €4e4q6 *:Ep'-'fts;',i k*tu*,nq (*ffi)
where & is called the Planck constant and has avalue h : 6.6 x 10-34 J s. We will show
iater how the idea ofphoton energy quantization leads to the Planck law. His success led
Albert Einstein (1874-1955) to 

"-onria", 
that the electromagnetic n"ta aiso has particle

(granular or corpuscular) characteristics such as momentum (Einstein, 1905, 1906).**
The basic energy unit as given by eq. (2.10) was later called a photon (I-ewis, 1926).
Einstein used the corpuscular characteristics of electromagnetic radiation to explain
some puzzling results from the basic photoelectricity experiment shown in figure 2.4.
It was found that when light is incident on one of two metal electrodes separated by a
vacuum, a current can be generated in the loop. The current generation, however, occurs
gnly when the wavelength is shorter than a certain value. No current can be generated
for wavelengths longer than this value, even at high light intensities. This exp-erimental
bbservation could not be explained from the classical wave point ofview, according to
which the energy of an electromagnetic wave is proportional to its intensiry, as implied
by, eq. (2.8). On the basis of the photon particle concept, Einstein reasoned that one
photon can excite an electron out of the metal surface only when the photon energy is
higher than the electrode worKunction A(: E, - E f), which is the energy difference
between electrons at the vacuum level, Er, and inside the metal, Ey,

hvo>Er-Ey

+*Einstgin 
developed theories on special relativity. particle characteristics of photons, and Brownian

a
tr
r
s

HEEE
d-+vt

motion before age 26, while he worked at a patent office.
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Work Function

Elechodes

Eplc: hu/c, suchthat

, . CJlcrn Qrfi luirl p = hk :

2.2.2 Malerial Waves

Cunent
(a) 0)

Figure 2.4 (a) Electron emission due to light excitation is called the photoelectric effect' The

edect was explained uy ninstein throughlhe introduction of corpuscular properties of light'

(b) Electrons in a metal have energy clol to the Fermi level and their emission out of the metal

,u.r^"" into *.uum is possible oiy when the photon energy is larger than the work function.
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wherc p is the magnitude of the particle momentum. To see how large this wavelength

is for a macroscopic object, let's assume p : mn *: I kB m s-1, leading to l ry 
.

6.6 x 10-34 m which is impossible to detect even with current technology. On the

other hand, an electron with a velocity of I m s- l and a mass of 9.1 x 10-3i kg yietds

7 x 0.7 x 10-3 m; a quite long wavelength. The first proof of the wave properties

of particles came from the electron diffraction experiment performed by Davisson and

Germer (1927).

Now let's consider a simple example to illustrate the consequence of material wavesj

Consider an electron as a wave that is situated inside a one-dimensional cavity oflength
D sunounded by an infinite potential.iOutside this cavity, the wave amplitude must be

zero since an infinitely high potential means that no electrons can have an energy larger

than this potential height. This means that the electron wave inside the cavity must be a

standing wave and its wavelength must satisfy eq. (2.8), 
-\

2Dl - - 
(n :1,2,3, ...)

n

The momentum and energy of the electron are

nh Dz
Pn: *andEn:L

I
2*

which are discontinuous, or quantized. Later, we will derive the same result from solving
the Schrodinger equation.

2.2.3 fhe Schrodinger Equation

Two basic methods have been developed to describe the material waves. The first was the

matrix method developed by Heisenberg (1925). Shortly after, Schrcidinger developed

the famous equation that bears his name. These two descriptions are equivalent among
themselves, so we will focus on the Schrddinger equation (Schrodinger, 1926), which
states that the wavefunction of any matter obeys the following:

-2* V',V,+U'Q,:iV1
3Vt

u (2.16)

where rn is the mass, f is the time, U is the potential energy constraint that the matter is
subject to and V1(t, r) is called the wavefunction of the matter and is a function of time
andcoordinate r.If U :0, thatis, amatterwithnopotentialconstraint, theSchrcidinger
equation becomes

Energy Level of
Electrons inVacuum

Level
in Metal

(2.14)

nh

2D(

, where ft : h I Qtt) .This h is used more often than the Planck constant ft because angular

frequencyandwavevectorincludethe2rfactor.Equations(2.10)and(2.L2)arecal|ed
!-ii"'pr*"i-ginsteinrelations. Thesetwo relations thus relate th€energy andmomentum'

I i ;ilil;;;;[y ;t"ciate with particles, to the frequency and wavevector' which

i I *"rro*ully asso"i"t" with waves. Electromagnetic radiation, and tly photons, has

4;;;;;-iJporri.r. characteristics. This wave-particle duality of light led to the

development of quantum mechanics. Einstein also discovered many new propertieq'of

photon;, such as stimulated emission which forms the basis of all lasers.

The wave-particle duality of light triggered-de Broglie, who was a graduate student then'

to postulate that a material puiti.t" 
"iro 

haC- wave properties (Broglie, 1925).* On the

basis of an analogy *itl tt 
"'ptun.k-Einstein 

relations, he proposed that the wavelength.

of any particle is

(2.13)

(2.17)

One may think that the equation is a parabolic type of equation similar to the transient
hbat conduction equation [eq. (1.19)], but the "magic" imaginary unit i really gives
rise to wave behavior. schrodinger himself did not come up with an explanation for the
,rneaning of wavefunction. The right explanation was given by Born, who suggested that

72 ^ a{/,
--VZtIt, - ift---:2m 0t

*Quantummechanicswasdeveiopedbyagroupofyoungresearchers'Louis.de.Broglie(1892-1987)

developed the material wave concept in t9Z3 wfrgi fre yllOiing his Ph'D' resear-ch' He received the Nobel

pnze in lg2g at age 3g. werner Heisenberg (1g0i-1g76) developed the matrix Jormulation of quantum

mechanics in 1925, immediately after he finis'hed his Ph.D. thesis on turbulencein 1923, and won the Nobel

prize for his work in quantum mechanics in 1932 atage 31. Paul Dirac (1902-1984) developed relativistic

quantum mechanics and won ttre Nobel prize in i933 at age 31. Erwin Schriidinger (1887-1961) developed

his famous equation in 1926 and received the Nobel prize in 1933 at age 46' ' i'{r; itself is not an observable quantify, but that Vltlrf is the probability density function
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to find the matter at location r, where "*l' means complex conjugate. The normalization

requirement for the probability function is then

VlVldx : I (2.18)

-€
for the one-dimensional case. For three-dimensional problems, the integration should

be over the volume. The probabilistic interpretation is difficult to appreciate since we

are most used to deterministic events in mechanics. Einstein, and even schrodinger

himself, rejected this interpretation. However, this interpretation has endured the test

of experiments and time. iince VlVi is a probability, the quantum world is full of

*nceriainties. Any quantities, such as energy, momentum, and location, are no longer a

deterministic quantity but have an avelage, or expectation, value and uncertainties; The

expectation value 1or most probable value) of any quantity can be calculated from

(2.r9)

where (Q) is the expectation value and Q is the operator for this quantity' The operators

for position, -o*.nto*, and energy of matter are

position operator:

f2: r Q'20)

momentum operator:

rl
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(
(2.2r)

and the energy operator:

+U
(2.22)

+ +U

The first term in eq. (2.22) corresponds to the kinetic energy operator and the second

term to the potential energy. In classical mechanics, the kinetic energy plus the poten-

tial energy of un 
"n..gy-Jonserve 

system is called the Hamiltonian of the system. In

quanturn*mechoni.s, thl Hamiltonian becomes an operator, according to eq. (2.22).In'

a Cartesian coordinate system, the gradient operator-V and ths T aplace operator V2 are

given by

++
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The differentials in the operators are applied to the function immediately following the

operator. Thus the order cannot be exchanged, which is similar to the matrix operation.

ti"ir"nbe.g's matrix formulation ofquantum mechanics naturally possesses such char-

acteristics. In eq. (2.19), ViOVr inside the integral means that the opqrator Q is first

applied to V1 and the obtained function is multiplied by Vi'As another example,

pxpxv,: -,r*(-m9rY) - -h,# (zz4)

which explains the way of expressing .F1 in terms of p in eq. (2.22).

The Schriidinger equation is time dependent. When the potential energy is inde-

pendent of time, we can derive the steady-state Schrddinger equation using the

separation-of-variables method. Assuming V1(r, r) : V(r)Y(r) and substituting into

the Schrcidinger equation, we get

1[ 52 " I tdv
- l-=-v'w+uvl:ih-*:E (2-25){/L 2m I Ydt

where E is a constant (eigenvalue) since V depends on r only and Y depends on t only,

and its meaning will be explained later. Solving for Y leads to

The governing equation for W(r) is salled the steady-state Schrcidinger equation

'2m

IE
Y = Ct 

"*p L-tt
(2.26)

(2.27)

This is an eigenvalue equation with the eigenvalue E and eigenfunction V determined

by the potential energy profile U and the boundary conditions. On the basis ofeqs. (2.19)

and (2.22), we can prove that the expected energy of a system is

oo

(2.28)

;-F

So the separation-of-variable constant E, or the eigenvalue, actually represents the

energy states of the system. Correspondingly, we could write the time-dependent part as

Y : e-i't , with E - fiar. So the material waves obey the Planck-Einstein relation,
eq. (2.10).

Because VlVl is a probability and the physical observable quantities are only the

expectation values, there are also standard deviations for these expectations, such as the

standard deviations in location Ax, momentum Ap, energy AE, and time A/. It can

be proven that, for any solution of the Schrodinger equation, the following relationship
holds

This is the famous Heisenberg uncertainty principle, which means that position and

iomentum, or energy and time, cannot be accurately determined simultaneously in
\
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the quantum world. Because h is a very small number' the uncertainty represented by

eq.1i.Ze1nr amacroscopic objectis very small. Forexample, if we decide that an object

*l*, u *o*"ntum of 1 kgms:l has an uncertainty of 10-10 kgms , the correspond-

ing uncertainty in determining its position is - 16-24 m, a negligible quantity. This

uncertainty, however, becomes quite appreciable for small particles such as electrons'

For our further use, we need also to have an expre€lior fpr the flux gf tbp {nalter,

being considered. This can be obtained by (1) first multiplying the Schriidinger equa-

tion, (2.16), by vi, (2) taking the complex conjugate of the schrijdinger equation and

multiplying the obtained equation by v1, and (3) subtracting the two resulting equations,

which leads to

where J is

Since the first ierm in eq. (2'30) is the ratg of the chqnge of the probabilt! qf finding the

matterateachlocation, the secondtermineq- (2.30) mustbe the netrate of matterflowing

out of the point. Equation (2.30) is tho particle conseryation equatio:r and J [m-2s-l] is'

understood as the current density (or flux) of the material wave'

The wavefunction is a difficult concept to grasp at first sight and this is not strange,

since even Schrddinger himself was not able to explain the meaning ofthe wavefunction.

However, Schrddinger was successful in using the equation to show that the energy states

of electrons are quantized, as we will see later. Born's explanation of the wavefunction

products vlvi as a probabitity density of matter implies that material particles have

spatial extent with some ambiguity, as we will see from the example solutions of the

Sitr<idinger equation.

(2.30)

2.3 Example Solutions of the Schriidinger Equation

In this section, we will give solutions to the Schrddinger equation for several important

cases that we will use later.

' 2.3.1 Free Particles l

A.free particle is one that it is not subject to any potential constraints; that is, U : 0.

We can think ofthis free particle as a free electron. For the particle traveling along the

x-direction, eq. (2.21) becomes

-Lt: - EV :o e.32)
2m dxt

The solution of the above equation is

rV(r) = A exp(-lkx) * B exp(ikx) V : 0 (for other.r where U --+ oo)

(forO < x < D)
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POTENTIAL ENERGYAND .

WAVEFUNCTION
U=a

=@

PARTICLE

0

Figure 2.5 (a) One-dimensional potential well with.infinite potential heights on both sides and

zero potential inside the box. (b) Particle energy quantization in the box and wavefunction for the

first lhree levels.

where k = 2Em/h2. When combined with the time-dependent factor. eq. (2.26),rhe
wavefunction is found to be

V1@, t) - \r-i(at1-kx) 1 3r-i(at-kxl (2.34)

where C1 in eq. (2.26) is absorbed into A and B. The first term represents a free particle

traveling in the negative x-direction and the second term along the positive -x-direction.
Interested readers may ask what the Heisenberg uncertainty principle means for

a free electron with a given momentum and energy. Equation (2.34) shows that the

wavefunction for a right traveling wave extends from.r : *ao !o .r : oo, with equal

probability everywhere, which means that its position is not determined at all. Similarly,
the wave has fixed energy but spans time from negative infinity to positive infinity, that

is', the whole time history. Thus, the Heisenberg uncertainty principle holds true for this

.slmple case.

2.3.2 Particle in a One-Dimensional Potential Well
lliri l

On the basis of the requirement for standing waves, we derived eq. (2.15) which shows the

quantization of the allowable engrgy levels for a material wave inside a one-dimensional
cavity of length D. Now let's start from the Schriidinger equalion and demonstrate that
eq. (2.15) is a natural solution of the equation. We consider the case of a particle in a

one-dimensional potential well, which can be, for example, an electron subject to an

blectric potential field as shown in figure 2.5(a). The steady-state Schrddinger equation
for the particle in such a potential profile is

U=0

(b)

0

h2 d2tv
-;--;--T+Q - E)v:o

zm d\.
(2.3s)

(2.36)

(2.37)

The solution of the above equation is
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The general boundary conditions are the continuity of the wavefunctions and their

derivatives at the boundaries. I?re eontinuity of thE wavefunction states that

the probability densitY of finding the matter cannot be double val-ued at the same loca-

tion. The continuitY of the first-order derivative of the wavefunction can be derived by

integrating eq. (2.16) over an infinitely thin control volume encompassing the boundary,

and this condition implies the continuity of the particle flux. For the current problem,

continuity of the first derivatives is not required because the wavefunction at the

boundaries is already known to be zero. Applying the

forx : 0 andx : D,wehave atx : 0

continuity of the wave function

A*B:O (2.38)

'atx: D

A exp 
l:,,, rff] * 

" 
*n l',,W\:,

Simultaneous solution of eqs. (2.38) and (2'39) yields

"^(,ff):,
so that multiple solutions for E exist at

(2.3e)

(2.4r)2mE,--;_
ht

: nrt

il

Here we take only positive values of n since the negative values give the same electron

probabitity distriLution functions and are thus identical to the positive solutions' The

ialue n : 0 is excluded since taking this value will lead to V = 0, which means no

purti.t. exists iriside the region. The integer n is called the quantum number. Each n

lorresponds to a wavefunction anil an energy levi:I. For multidimensional problems,

which we will encounter lateq there will be more quantum numbers, including the spin

quantum nrrmber for electrons. From eq' (2.41), the allowafle energy levels are 
, ,

e* *vt E.;*(gi'=#(#)' 3, ...) (2.42)

which is the same result as eq. (2.15). The material wave function inside the potential

'wellis : : 
.

:

' lwtx\v-: =ZiAsin 
( -- I Q'43)\D/

To find the coefficient A, we use the normalization condition

(2.M)

-oo

*){-l^e-fotl-st*:.rr+ f"o1la \S o g'?qg.eo
shaels Adt# C u^rct-g tryd )

rrocrnq}.('eai\Pn
el.1oBe- 

-" 
E 59

which gives A +)'/2D, and thus

uiq rl..leo
55

lT / n,rx\*": ,l ;.t" (?) (2'4s)

These wavefunctions are standing waves, as shown in figure 2.5(b). The separation

between successive energy lerrels depends on the width D of the potential well, the

mass, and the order of the energy level. When D is large, the energy separation is very

small. The observation of such energy separation requires sensitive tools that can discern

small energy separation. When the energy separation is larger than the thermal energy

fluctuation, the quantization effect can be easily observed. For electrons with a small

mass, ttris requiris in general that D is smaller than 100 A'
Let us now show that the Heisenberg principle is satisfied fot n : l. The most

probable position and the standard deviation in its position can be calculated

ioltowing eq. (2.19):

ltx
(2.46)

1l
n-* (2.47)

Similarly, the most probable momentum and the uncertainty standard deviation in its

momentum are

D

(2.48)

r/2

x

D

I
0

sln-ol: lwfxvld;r

From eqs' (2.47) and (2.49), we obtain Lx L'p :0'57ft, thus satisfying thc Heisenberg
. uncertainty principle. This example shows although the electron atn : I energy level

, is most probably positioned in the middle of the potential welf (x : D /2) eind has zero

average momentum, it can also be at other locations, as the wavefunction suggests.

., . Although the above solution for an electron in a potential well is one of the simplest

solutions olthe Schriidingerequation, the experimentalrealization ofsuch asystem came

only in the 1970s, after the concept of superlattices was proposed (Esaki and Tsu, 1970)

,4nd the molecular-beam-epitaxy (MBE) thin-film growth technique was invented. The

fr{SB technique allows the controlled growth of thin films to an accuracy of one atomic

iayer or less. Since then, studies of man-inade quantum strucfures have become one of
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CpmmentiFor the above two-dimensional problem' we ottain two qu?ntuT nu-mbers

'tandn.T}pically,thenumberofthequantumnumbersisidenticaltothedimen-
sionality oiine piottem. For a three-dimensional problem, there are three quantum

numbers, as we will see latdr. Each set of quantum numbers deterrnines a unique

wavefunction. The energy levels for different sets of !' andn' howetrer' can.be:

identical. For example, t-he wavefunction corresponding to t^= 
' ^:1: - 

2 has

the same energy u, ihut .orr".ponding to !' : 2 and n : 1' These states that have

different wavefunctions but the same energy are said to be degenerate'

2.3.3 Electron Spin and the Pauli Exclusion Principle

Each wavefunction obtained from the Schrddinger equation, as exemplified in.the

previous sections represents a possible quantum mechanical state at which ] Particle

can exist under the given potential. The solutions ofthe Schrtidinger equation, however,

do not tell the entire story regarding the quantum state of a particle. For example, the

equation cannot predict the spin of a particle. The spin is a properfy that preserves the par-

ticle's rotationat symmetry and can only be deri-ved from relativistic quantum mechanics'

developed originally uy tiirac. It is an intrinsic property of the particleand phould not'

be undbrstoodl simily ior example, as the rotation of an electron around. a nucleus' Fcir

electrons, ,oo"rpona''ing to each wavefunction obtained from the Schriidinger equation,

there are two quantunistates (or two relativistic wavefunctions), which-are usually

denoted by an additional qudntum numbers that can have the following values

NANOSCALE ENERCY TRANSPORT AND CONVERSIOT'

on the basis of the allowable values of o and p, we can determine the allowable

;;'sy;;;i * '

Etn - u' t!1lr',o' (t,n : 1,2, -..) (E2.1.10)

Corresponding to each set of I and n, there is a distinct wavefunction

(82.r.11)

condition (2.44)

(2.s0)

where s - l/2 is called spin up and s = -ll2 is called spin down' The spin quan-

tum numbers for other types of particte are different. Interested readers sho'uld consult

quantummechanics texibooks (Feynman, 1965; Cohen-Tannoudjietal., 1977; Landau

r andLiftshitz, lgTT).'
we can combine this spin quantum number with the wavefunctions obtained-from

- the Schriidinger equation to denote the complete set of wavefunctions that a particle can

have. For an-electron in a one-dimensional box, the wavefunction can be denoted as

vn,r. Each set of quantum numbers n and s represents 4 quantum state. For each n' there

arc two quantum states (s : !/2 ot s : -ll2) with identical energyi The number of
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wavefunctions, that is, the number ofquantum states, at an identical energy level is called

the level degeneracy. Thus, the electron in a one-dimensional box at any energy level

n has a degeneracy of two. The Pauli exclusion principle says that each quantum state
' can be occupied by at most one electron. This principle determines how the allowable

energy levels, such as those given by eqs . (2.42) and @2.1.10), will actually be occupied

by electrons. Although eq. (2.42) [or (82.1.10)] is derived under the assumption of one

electron in an infinite potdntial, the solution should be valid if there is more than one

eiecffon inside the well, under the approximation that the interactions ofthese elebtrons
' do not change the potential profile. From the principles of thermodynamics, we know

that elechons tend to occupy the lowest energy states. Ifthere are five electrons in the

potential well and the temperature is at absolute zero (to avoid thermal fluctuations),
two electrons will take the lowest.Et energy level (W1,172 and V1,-172 quantum states),

and another two will occupy the next lowest level E2 (V21p,V2,-1l2 quantum states).

The fifth electron will occupy either the V31p.or the V3,-112 state. The occupation of
, a quantum state at non-zero temperatures will be discussed in chapter 4.

a/.^*-xsgq-
Roru*"'

hl4* "lnbr*}o,t
Tlvo main factors govern the Schrtidinger equation and the consequent energy eigen-
Values and wavefunctions: the potential distribution and the boundary conditions. Thp
rectangular potential profile for the particle-in-a-box furoblem discussed in section
2.3.2) gives energy eigenvalues that depend on the square of the quantum numbers,
as represented by eqs. (2,.42) and. (82.1.10). In this section, we will study the energy
levels and eigenfunctions of a harmonic oscillator, which'is a very useful model for
describing the atomic vibrations in simple molecules, such as H2 and CO, or the atomic
vibrations in solids. We can appreciate this by considering the general shape of the
interatomic potential, shown in figtre2.7(a).If the vibrational amplitude of the atom is
not large, we can expand the potential around the equilibrium porition, .16, such that

u(x') : u(xo) .;l#1, 
-,or*' 

- ,og+ ou*'- '0)31 e.st)

Energy Eigen-values
For A Harrnonic Oscillator

>i
b0
o
tr
FI

Harmonic Potential
Approximation n=3, Er=hv+Ez

n=2, Er:hr1+E,

u=I, E,=trvr-Bo

n=Q, Eo=hv12

Interatomic
Distance x'

hv

hv

I trv
V

Equilibrium Position

(a)

Figure 2.7 (a) The harmonic oscillator model approximates the potential at equilibrium by
a parabola. (b) The energy levels of a harmonic oscillator.

Harmonic



60 NANOSCALE ENERGY TMNSPORT AND CONVERS'^N

where we have used the fact that dtJldl - 0 at the equilibrium

minimum of a curve). Neglecting the higher order term O[(xl - xo

on the atom thus becomes

point x/ - -16 (the

)31, m" force acting

(2.s6)

(2.s8)

F = -dU ldxt - -K(xt - xo) : -Kx Q'52)

where .x(: x, : xd represents the displacement from the equilibrium position rather

than the separation between utoms, arid K : @2u/dx'21r-,rois the spring constant

such that i : f*12. This potential represents a classical mass-spring system' the

Schrddinger equation for the system is

-##.e-a)v:o (2.s3)

Boundary conditions for the above equation are

V(x -+ oo) : rlr (.r -+ -oo) : 0 Q'54)

because as .r --) ioo, the potential U + oo, which requires vanishing wavefunction

values in these limits. Solving eq. (2.53) involves a coordinate transformation and a

series expansion, and will not be pursued here (see Landau and Lifshitz, L977)-Final

results for the energy levels and wavefunctions are

€**, h

where

lndard function called the Hermiteot = 2rv is the angular frequency, and l/n is a s*
polynomial, given by

We see that u is the fgndamental vibration frequency that we get from classical

mechanics for a mass-spring system. In classical mechanics, however, the mass-spring

system energy, which equals the sum of the kinetic and the potential energy' can be a

ctntinuous function ofthi amplitude ofthe oscillator. Equation (2.55) says, however, that

the energy of the harmonic oscillator is quantized and can only be a multiple number of

ft u plus I 72 u , which means that &e6eparation behveen adjacent energy levels is constant

*i"ooi ,o ,,u, as shown in neure ZJ(t). ^Ih; ritv term in eq. (2.55a)is called the zero

point energy, which is unimportant for most heat transfer problems' It is a manifestation

or tl. u"il.oUerg uncertaipty principle. In figure 2.8, we show the wavefunctions (tU) l

NORMALIZED COORDINATE (na t h)rt 2 t
(a)

-3-2 -l 0 1 2 3 4

MATERIAL WAVES AND ENERCY QUANTIZATION 61

-4-3-2-10123
I ruonmauzeo cooRDTNATE @at t nl t2 x

(b)

Figure 2.8 (a) Normalized wayefunction and (b) normalized probability distribution for a

harmonic oscillator.

m1m2

and the probability density distributions ([Vl2) of the harmonic oscillator states. The

latter shows the probability of finding the vibrating atom at position x. As the quantum

number n increases, lVl2 spreads wider which means that the potential energy grows

with increasing n. The kinetic energy also increases with increasing n'
The harmonic oscillator moOel is important for understanding the absorption char-

acteristics of gases in the infrared tp"Ct o*. When d photon interacts with the gas,

. ,absorption occurs only when the photon energy equals the energy difference between

the final state and the initial state of the molecule,

Ep:hvp:Ef-Ei (2.se)

wherethe subscript p represents photons. Forthe vibrational modes ofamolecule, eqs

, (2.55) and (2.59) lead to uo : uAn. Further quantum mechanical consideration limits

An ::t1 (the minus sign corresponds to emission), which is called the selection rule.

.The absorption or emission of a photon occurs when the pholon frequency equals the

: molecular vibration frequency (also called an absorption line),

I lK, vo : =-rl 
J (2,60)Zt\ m

The relative vibration of atoms in a polyatomic molecule can be modeled as a har-

monic oscillator. When applying the above expression to a diatomic molecule with two

atoms of mass m1 and *i, tn"reduced mass should be used,
i

t, llI

lv,G\2

I
I
I
I

I
\

t
I
I

m1 ! nt2
(2.61)
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the most active areas of research' Figure 2'6(a) shows a pragtical qualttlm well made

of a very thin solid layer oigalliumlsenide (GaAs) semiconductor' It is sandwiched

between other materials n #t ict, the potential energy for the electrons is higher than

that in the GaAs layer. The allowed electron energy states inside the GaAs layer become

discrete. This quantum size effect has been used to make better semiconductor lasers and

detectors.Inadditiontothinfilms,inwhichthequantumeffectoccursinthedirection
;;il;;il;, ;rir* qr"r*m structures, such as quantum wires, carbon nanotubes,

;J1",, tq*"tum dots);;; atso being actively studied, as shown in figures 2.6(b) and

(c), respectivety. The potentials in thJsunounding for these cases may not be infinite

;;ilil;;#ing ri-pr" "**ple' 
Thus, the energy levels may be more complicated

than given by eq. (2.42)'

Example 2.1 Electron inergy levels inside a square nanowire

Determine the allowable energy levels of an electron in a two-dimensional square

' - '---'ng the pliential inside the quantum wire is U : 0 and outside
quantum wue, assunu

isU:oo.

Solutilon.'We establish a coordiriate system as shown in figure E2.1 . Clearly, outside

;;;;J *.rr' *i it^"e V,:- O.because u = oo' we thus focus on the solution

- inside the potential well. The Schrddinger equation inside the well (U : 0) is

NANOSCALE. ENE{CY TRANSPORT AND CONVF'

a2v
a7

with the following boundary conditions :

'x-0orD'
Y-0orD'
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Figure E2.1 A square potential well.

-. In this equation, the first term depenfs on x and the second term on y. The third
term is a constant. This leads to the requirement that both the fust and the second

term must be a constant. Since E is positive, we can show that neither of the first
two terms can be positive (see what hdppens if you assume one of them is positive).

Thus, we write

: -(I2 @2.1.4)X dxz

I dzy
Ydrz-

The solution for X is

X(x): Asin(ax) * Bcos(ax) (F,2.r.5)

-,EV : O

V:0
V:0

(E2.1.r)

To satisfy the boundary condition that V = 0 at.r : 0 and x : D, wemust have

:.:: X :0 at x : 0 and.x : D. Applying these boundary conditions, we see that

n7tu:4 (n:l,t t (E2.1.6)-D

Xn(.r) : 4n sin 4 (82.1;t)

Similarly, for Y, we have

(E2.1.8)

, (82.1.3) (82.r.9)
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Figure 2.g vibrational normal modes of (a) H2o and @) co2 molecules. Arrows represent atom

uiiruti* air""tion at onqinstant' :

)r';-T'-6'r:
irnFi*:v{!;ini:*$iffi }";*:"1;';#J'il'1ry1'l;"i:;t-u

or, in terms of wavllengh, 7 - 2-'3*-' #;;;;;;' 
'': 

t1x: 4401'cm-r

(wavenumber equals thainverse of wavelength)' Experil;ntallyt 1e 
can determine the

absorption frequency using spectros.opy t""-#qoes and thus use eq.(2'60) to estimate

the effective ,p.i"g tonttuilt of ti'" interatomic bonds in such molecules'

.vibrationalfrequency.Ingeneral,thecomplexvibrationalpatternscanbedecomposed

. into normal modes. Each normal mode can be itrougtrt of as one harmonic oscillator with

a correspondi"g rt'Ia'*""i^i i'"qu*1v nxamprei of the normal modes for water and

sarbon dioxide (CCt;t ; shown^in ng"t"tisi"l ang O)'l'hT:fundamental normal

. modes "* u. ,rpe".ilirilr;^;; ;; #w ausorption lines.. For ex.ample, the difference

between tt e asyminetic and symmetric ,*i"tring gives t-ire familiar.absorption line of

iti"* *ft" peak of tenestrial thermal radiation'

The trarmonic "*iii"* 
*"a"r also represents qutrntized _elecfiomagnetic 

fields and

, 
atoiiric vibrations in solids. For an electro;"g"",ii field at frequency u, the allowable

(a) Water Molecule

Bending
(two directions

double degeneracY)

663 cm-r

(b) CO, Molecule

energy levels are '.

Eo = hvo
(2q2)

where n is the number of p.hotons in the field having f;equencY uo This expressron rs

consistent with orrr previous discussion on thequantized electromagnetic field eq. (2.10).

In the next chaPter' we will show that atomrc vibrations in a crystalline solid can also

be decomPosed into

ii
lii

,l
I

I

I

:,i

1l

I
i,

as well.

nortnal modes and that the energY of each mode obeys eq. (2.62)
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IT
Figure 2.10 (a) A rigid
rotor. (b) Energy levels

in a rigid rotor.

2.3.5 The Rigid Rotor

In diatomic and polyatomic molecules, thq atoms can vibrate relative to each other '

or rotate as a whole. The relative vibration can be treated by the harmonic oscillator

approximation. Let us consider the rotation only and assume that the distance between the

t*o.u5.t of adiatomic molecule is constant (rigidrotation), as showninfigure 2.10(a).

In classical mechanics, a quantity often used to describe the rotation is thg moment
, of inertia. For the two-mass system shown in figure 2.10 rotating relative to its mass

."** ,t 
" 

moment of inertia is

1mtmaf X

mt*mz

where 16 is the effective separation between the two atoms. In'classical mechanics, we

often use the angular momentum equations to solve rotational problems. In quantum

mechanics, tlere are also corresponding angular momentum equations that govern the

wavefunctions and energy eigenvalues for rotation. Here, we will skip the details but

give the solutions for the wavefunction (Landau andLifshitz, 1977) , '

(2.6'

(2{+r)(L-lmDl
(2.64)

4n(l t lml)l

0 and g are polar and azimuthal angles, respectively, in a spherical coordinate system,

where g : (-1)' f.or m Z0 and e : 1 for m < o,and P is the associated Legendre

polynomial

PTG):
I - E2)m/2

\ 
.The fun"tio ns Yf (0 ,@) are called the spherical'harmonics. The energy eigenvalues are

Ytr@,,p): rtr 
I

-tr/2

) ,l^' (cosolsi^v ,

Et = #l ,U * t) = hBt(t *1)' (for lml s t, {. :0, t,2, . . .) (2'6s)

where B = hl(8n21) [Hz] is called the rotational constant. For H2, B : 1.8 x l}r2 Hz.

The conesponding wavelength for this rotational state alone is vety small (- 100 t"tm).

Because there are two degrees of freedom for the rigid rotational motion (polar and

azimulial airections in a spherical coordinate system), we see that two quantum numbers
,'einerge, that is, I and rn. Each set of I and m gives a unique wavefunction and thus a

'Uriique quantum state (spin quantgm number not included). The energy levels given by
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eq. (2.65), however, do not depend on the magnitu de of rn'For each l' ther e are (2t * l)

values of rn, that is, (21 ;;i;;;ilctionsiaving the same energy level' The energy

level E2is thus (21 + f l#a J"g"n"'ut'' 'i*it*L th" d"g"n"racy of a particle in a

two-dimensionuf m* Air"o,'"Jii t*u*pi" 2'1'' because there are Qf + D rotational'

orbits. We use 8 to d"*t;;;;;;"'"ioiv tothat' for the rotational level at energy E4

we have

c@ =21+l

Similar to the case of harmonic oscillators, the photon absorption by rigid rotors

occurs only when the d;,i";-;ial" "n"rgy 
levels of the oscillators matches the

photon energy. ttre setection *t" i" qu**m mechanics further limits the photon to two

adiacent energY levels (Al : 1),

where B in the unit of wavelength is of the order-of 100 pm for hy-drogen molecules;

thus pure rotational *"d* ;;;" iong wuv"l"ngths and are typically unimportant in

thermal energy transfer, i;i,t"l, "ribe 
important in the microwave range' Since a

diatomic mole.ot" .* t uu" uotrr viurational and rotational modes, we can approximate

their allowable 
"n"rgy 

.,* u, it 
" 

rup"rporition ofthe rotational and vibrational energy

levels, forming uiU.utionoJ,otutionui'tu'"'' Assuming' for simplicity' that the rotational

and vibrational motions -" ind"p"ndtnt' we can then write

vo : (Eq1 - Eil I h = 2B(I' + l)

E(vib * rot) = En(vib) + Ee(rot) (2.68)

nbined vibrational-rotational states
and, conespondingly, the absorption lines of the cor

can be written as

(2.6e)

i

I'

l:i
.

wherethepositivesignmeansthataccompanyingtheincreaseofthevibrationalenergy
level due to the pft*;J 

"i*tption' 
the *tuiloout energy also increases by one level'

while the negative.i;;;;;;;'the rotational energy decreases by one lerel. Thus,

sunoundingeachfundamentalvibrationalfrequencyuofpotyatomicmolecules,spectral
lines with fine ,t*ctu;;s J;; ro molecular rotaiions are formed. These lines often overlap

due to various uro"o"nirrg "ra 
int"ra"tion mechanisms (such as thermal.vibrations) so

.d ilil;ri;;i e;, effectively occurs over certain bandwidths (called bands),

rarher than only 
"t 

,h"; dir;;;te hnes. Figure 2.11 illustrates the absorption bands of

COz molecules at 0.5 atm and 300 K'

2.3.6 Electronic Energy Levels of the Hydrogen Atom

Thevibrationalandrotationalenergylevelsthatweprwiouslyobtainedarefoitheatomic
motion of polyatomic *;;;;. "Li;* 

lef s consider the electronicenergy levels of an

atom.Weusehydrog"nuto-ma'un"*u*pt"sincethereisonlyoneelectronsurrounding
the nucleusr The sotution we witifino, tto*"uer' can be used as a basis for understanding

il #;#;ilf,o "r.*, 
havrng multiple electrons The nucteus of ahydrogen
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15

0.6

0.4

Wavelength, l, (pm)

Figure 2.1 1 Vibrational-rotationalabsorptionbandsofCO2 molecules(SiegelandHowell, 1992;
courtesy of J.R. Howell)

(2.70)

where c1 : e2 /4tt eo andthe electron charge is e : 1.6 x tO-19 [C], wnile e6 : 1.124 x
is the electrical permittivity of the vacuum. The potential ist0-101+n1C2 m-z N-l1

Fdr
c1

(2.71)

Since the nucleus is stationary, we can take it as the origin of the coordinate system. The
Schrridinger equation then becomes

72^/__vz\p + I2m\ r/ (2.72)

Iri spherical coordinates, the Laplace operator is

o
C)c
(0

o-
o
.A
.o

.i.i

I11.i v2: i*('*).rh#(""'#) .rkf* \273)

solution of eq. (2.72) can then be separated into a radial wavefunction Rn2(r) and
spherical harmonics Yf (Gnffitts, 1994)

Vnt^ = Rnr(r)Yl'(0,p) (2.74)
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Figure 2.12(a) and (b) Amplirude square of^spherical harmonic functions in polar coordinate g'

The g direction is e*isypm"'triJ;ffithJ: 0 axis and G) nonnalized radial wavetunction

of the hydrogen atom.

. *c? 13'6 ev
1-eL - __-L-: --on.- -Tfpn2 - nz

.<l,t:o,1,2,...)

-3+ +tr.: l+ n=3 (:r.5e\4

2s _4- g=2 (-3.4 ev)
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Figure 2.1 3 Illustration offirst three energy

levels of the hydrogen atom'

where.,1" in front of s represents n : I qnd "s" following I represents I 7 0. Since

u mu*i*um of one electron is allowable for each quantum state (Pauli exclusion

nrinciple) , the 1 s-orbital can have a maximum of two electrons as a result of the two pos-

iitt" nutu"* of the spin (s : I /2, -l /2). Fot n - 2, the following values of I and m arc

possiUfe

wherc Y[is given by eq. (2'64)' Because of the thre3 degrees of freedom in spaCe' there

are three quantum numb "" ",i, ^"a-*in 
the wavefunciion. We will skip the analytical

expressions for the radial 
"w"""iu"i"", 

but give a few graphical exam.ples of Rnz(r)

ffiFt; ft;; glr"ztz rhe allowable e4ergv lwels of the electronlluglzus sYstem ar'e

/ : 0i, , m :0 2s orbital

I : I v4 - -1,0,1 2p orbital

Two electrons arg allowed for the 2s-orbital and six electrons in total are allowable-for

the three quantum states in the 2p-orbital (p-shell). A total of eight electrons is thus

allowed foi the n : 2 states. In general, the degeneracy for a hydrogen atom of any

arbitrary n is

g:2n2 (2.76)

, spectra of hydrogen before quantum mechanics was developed:

The allowable hydrogen energy levels provide a framework for understanding the

table. Since thg electron-ion interdction dominates the potential, the existence

electrons in other atoms does not alter very much the major picture of the

states, as shown in figure 2.13, according to the thermodynamics princiPle that

level will be occupied first and each quantum state can have at most one

The one electron in hydrogen will occupy one of the.two ls orbitals. The two

in a helium atom will fully occupy the two ls quantum states. Lithium has

electrons and the first two will fill the ls-orbital and its third electron will fill one

and so on.

2.1 lists the electron orbital occupancy of elemental atoms, UP to the argon

rl

it is always the case that quantum states with smaller orbital quantum number
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Table 2.1 Electron configuration of first 30 elements in the periodic table

ElectronConfiguration'

Atomic
Number Element

hydrogen

helium

lithium
beryllium
boron

carbon
nitrogen
oxygen
fluorine

sodium
magnesium
aluminum
srlrcon
phosphor

afgon

idt N$b4

I
t

I
2

neon

5

4
5

6

7

I
9

10

1

2l
1',

?

24
. 2 5

26
I
2
2l

23
24
o<
26
26
26
261
2:' 6 2

2 6 :3

265
265
266
267
268
2 610
2 6r0

chlorine

11

12

13

t4
l5
16

17

18

l9
20
2l
22
23

24

25

26
1'7

28

29

30

i
il

!

rl

arefilledfirst.startingwithpotassium,however'webegintoseedwiations.fromthis
;#][",il; tt un nfine ,rr" ga-o.bior, one electron actually fills thp 4s-orbital first'

This effect is due to electron-electron interaction such that the energy levels for the

il;i;;;;"*pr., it, lp, and 3d have the same n :3) ateno lgnge-r the same' This

change is called the lifting ii,n" a"g"neracy, and is because the 3d levels have .l,tligltly
t igf,Jr .n".gy than the 4s level. ftr-erefo1g, th:.e-xtra electron in potassium will fill the

4s-orbital rather than occupy one of the 3d-orbitals'

The fllling of *re etectrinic states determines the chemical activiry of each atom. If

all orbitals oithe same principal quantum numb et n ate filled' the 
"111T 

ine.rt bec-ause

,t 
" "n.rgy 

difference to the next ievel of n is much larger than rc67 (?6 
Ytgy 

at room

temperaiure). otherwise, the vacant quantum states.within the same princrpal qlantum
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number can accept other electrons or lose electrons to form a more stable state. For

example, the Hz molecule has two electrons sharing the two ls quantum states in the

hydrogen atom, such that each atom "feels'1 that it has two electrons. In various acids,

the hydrogen atom.is also happy to give up its electrons. We call the electrons in the

outermost principal orbitals the valence electrons,

Using iq. (2.75),wb can calculate the absorption lines of hydrogen atoms as

hvo(nt --> nz):13.6 eV (2.77)

Example 2.2

Determine the photon frequency and wavelength for series of allowable emission
from all other states to the n : I states from the hydrogen atom. This series is called
the Lyman series.

Solurton: The emission occurs when the energy of the hydrogen atom drops from a

high energy state to a low one. From eq. (2.77), rhe emission spectrum is

13.6 eV

n2
(F;2.2,r)

: 3.288 x 1015 7
Thd emitted photon frequency and wavelength are listed in the following table. These

nur-rbers are in excellent agreement with experiments.

vr(n --+ l) x 10ls Ltz lp(n --+ lXnm)

)

2

3

4

2.466
2.9227
3.8025

121.57

102.57

97.255

3.288 91.t77

Now we are in a position to discuss the total energy of an atom or molecule. The total

. : , energy can be approximated as the summation of translational, vibrational, rotational,
and electronic energies:

Etot _ Etrms + E"l + Evib + E'rot (2.78)

.Foramonatomic gas, there are no vibrational orrotational energy levels. Although we did
not discuss the translational energy levels much, the particle in a potential weli model

fgscribes the allowable translational energy levels of an atom or molecule. Parallel '
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kinetic energY; '

Comparing eqs. (2.80) and (2'79), we see that

(2.80)

(2.81)

md side of eq' (2'81) is momentum
and this is similar for y and zdirections' The lefrhl

p,. The right-hand ,i0", J"""Jitg "qt' tz's) or (1'38)' !? 71"' 
Thus,' eq'-(2'81) is

a consequence "r 
trr" pr"ttt-gi"iJn iation' eq (212)' between momentum and

wavelength. :

2.4 SummarY of ChaPter 2

In this chapter, we have introduced the yave;l1rticle duality of electromagnetic radi-

ation. Ir was through ,h" ;;;;f pi*rt uoa'ninstein that the particle ciaracteristics

of electromagnetic radiatioJ *".. i"u*r"a. phnck suggested that the energy of an

electromagnetic wave at f;;;;; " 
*tt1t" anintegraimultiple of E = hY' Einstein

further showed that this i"i. "*rgy 
unit has partiJte characteristics, and this basic

quantum of energy was ";;;"ii;;;*"a n!9ton The momentum and energy relations

;;;;;*;t u:na p*itr"t are called the Planck-Einqtein relations

l,
.i
I

I

h
E-hv' P:7

.i.

Fparticle duality of light' de Broglie further su€gested that

H#: rtffi;tir[11lnru.s rhat ro'ow ti,. rumJ-pi*Jr-nnstein rel'ations' rhis

suggestion led to-the d"*i;il; of quanlum mechamgs rtre scnrliailger equation

describes material waves'

62 ^ ._ 0Vr_,, VzV, + UV, _ ih_.2m' ' ot

avefunction is that VlWf gives the
where V1 is the wavefunction' The meaning oJthe u

probability tt at matter witi; i;ilt i"caltion r and time I . In the quantum mechanics

world, things o." on"",,ut""JJ tf'" *ot'probable value of any quantity is calculated

from the operator f", th;;;;;;"i"ti'i'rttt its location; momqntum' energy' and ,lexclusion principle dictates that each quantum state can have a maximum of one electron.
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,l ,o on. The uncertainties of the location and momenfum, and of time and energy, obey

the Heisenberg uncertainty principle

ApAx > h/2and LEAI > h/2

Solution of the Schrtidinger equation leads to eigenvalues that are identifled as the

(most probable) energies of the system. We have given solutions for the following

potential fields:

1. Free electrons. The free electron energy level is a continuous variable.
' 2. Particle in an i.nfiqite one-dimensional potential well. The particle energies are

quantized and their wavefunctions form standing wlve_s. Resgalch on artificial

quantum structures has become a mainstream research field and has led to many

exciting aPPlications.
'3. Harmonic oscillator. The energy levels of a harmonic oscillator are quantized

according to

(n:0,1,2,...)

The harmonic oscillator represents a wide range of phenomena such as the vibra-

tional energy levels in polyatomic molecules, an electromagaetic field, and atom

vibrations in solids.

4. Rigid rotor. The energy levels of a rigid rotor are given by

Ex : fir<, * r> (for lzl :: t,t : o, 1,2,...)

where I and rn are integers. Because there are multiple I andm values that give the

. same energy, and each set ofl and m represents one quantum state, the rotational

energy levels are degenerate. The degeneracy is S(l) : 2l I l. The energy sepa-

, ration between rotational energy levels is very small. They are typically observed

together with vibrational energy levels.

5. Hydrogen atom. The electron energy levels of a hydrogen atom ale

)
E"r= -!L--13'6ev (n>l.n>t+1, and lzrl <l,l:0,1,2,...)

. Dn- 
ih2n2- h2 \,, Ir"&-!t-

'where, again, each set of (n, m,4), plus the spin quantum number s, determines

a quantum starte. Because the energy level depends on n only, the energy levels

*. degenerate, the degeneracy being g(n) :2n2.The electron energy levelsin
the hydrogen atom provide a basis for understanding the periodic table and the

chemical activity of atoms.
6. For an atom or molecule, the total energy is the sum oftranslational, electronic,

rotational, and vibrational energy levels (the latter two are for polyatomic molecules

only).

,, Z. e photon interacts with matter (absorption or emission) only when the photon
' energy and allowable energy levels of the matter satisfy the following relation

i1 
Ephoton : ftuphoton : El - Ei

r,,,In addition, we should understand that each wavefunction determines one quantum

Electrons also have spin, which cannot be obtained from solving the Schriidinger

The two spin quantum numbers for an electron are s : I /2 and-112. The Pauli
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2.5 Nomenclature for ChaPter 2

wave amplitude :

rotational constant, Hz;

or undetermined coeffrcient in

the wavefunction
constant in eq. (2.70), Nm2
width of potential well, m
charge per electron, C

force, N
degeneracy
Planck constant, J s

Planck constant divided bY 2n, J s

svstem Hamiltonian, I
-oment of inertia, kg mz

particle flux, m-2 s-l
hasnitude of wavevector, m-l
waievector, m-l
spring constant, Nm-l
quantum number

mass, kg; quantum number

quantum number

magnitude-of the momentum,

kg m s-1
,rio*"n o* oPerator' kgms-l
effective distance between

two atoms
' radial distance from origin, m

position vector

spin quantum number

time, s

system energy or poteritial energy, J

Cartesian coordinates

separation of variable comPonent

unit vector in Y direction

separation of variable comPonent;

spherical harmonics

separation of variable constant

separation of variable constant

standard deviation in x from the

expected value
gradient oPerator

Laplace operator

electrical Permittivity of
vacuum, gz tr1-t *-z
Boltzmann constant, J K-l
wavelength, m
frequency, s-l
vector waveform
complex waveform
wavefunction
angular frequencY, rad s

operator
exPectation value

Subscripts

equilibrium Position
Fermi level
quantumnumber '

quantum number
quantum number

photon
spin quantum number

total
vacuum level
Cartesian components

'!,2,
y,z

SuperscriPts

unit vector
complex conjugate
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2.7 Exercises

2.1 Planck-Einstein relationr. (a) An argon laser emits light at 514 nm and at a power
of 1 W. Calculate (l) the frequency of the photons in*z, (2)their wavelength,
expressed as a wavenumber, (3) the energy of each photon, (4) the mornentum

, ofeach photon, and (5) the number ofphotons generated per second.
(b) If the photons are completely absorbed by a 1 mm2 surface, calculate (l) the
pressure exerted on the surface by the photons, and (2) the heat flux generated
by the photon absorption.

2.2 Transmission electron microscope.Elechon beams are used to study the atomic
structure of crystals, as in the transmission electron microscope (TEM). The
resolution of the microscope depends on the energy of the eiectrons, which
determines the conesponding wavelength of the electrons. The minimum focal
point of the electron beam depends on its wavelength. Determine the electron
wavelength if they have an energy of (a) 100 keV and O) I MeV,

2.3 Spring constant and interatomic distanc:e between H atoms in f12. The funda-
mental vibrational frequency of the H2 molecule is 4401 cm-l andlhe rotational
constantis 59.32cm-l. Estimate the effective springconstantandtheinteratomic
distance between the two hydrogen atoms. What are the photon wavelength and
frequency corresponding to the vibration transition?

2.4 Expectation valui of Himiltonian. Prove that E in the separation of variables of
the time-dependent Schriidinger equation represents the iystem energy; in other
words, prove eq. (2.28).

,2-5 Particle Flux.Deive the material wave continuity equation (2.30) and the flux
expression (2.31).

2-6 Photon emission wavelength. calculate the emitted photon wavelength if an
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2!.7 Heisenbetguncertaintyprinciple'Fotthen:2stateofanelectroninsideaninfi-
nite potential,"u, p##'#;,""#H;ir*b*g uncertainty relation LpLx z h12

,.t 5rt'?*t;"rt; stutnt of c-4 bonds'Tye ab:-",11:" bv a co molecule at 5'61 pm

is its fundamental vibrational mode. Determrne th! effective spring constant of

,.ri;r:-i:::r:;tational energv.tevels;The fundamental vibrational frequencv of

the Hz molecule i, ++o] ",i1i 
*d its rotational constarrt is 59'32 cm_l' Deter-

mine the photon "t'i;;;;*elengths 
due to combined vibrational-rotational

modes in Hz near ttre fundamental vibrational mode'

2.10 Electron reflection' iTffiffi;ht* ry r9' an electron of energy E movrng

from left to right "#"Jt#;;J;*urlutti"t 
of height 6' The electron wave

"un 
U" t"n".t"a or transmitted

(a) Show that *";H:iloils of the incoming' reflected' and transmitted wave
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functions are

respectivelY, where
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Poiential

U=6

Electron

-> il
x Figure P2.1 1 Figure forproblem 2.11.

3 (region II), as shown in figure P2.11. The electron has a certain probability

of traversing the potential barrier and entering region III. The objective of this

exercise is to derive expressions for the electron reflectivity and transmissvity.

To complete the derivation, go through the following steps:
(a) Solve the Schrdciinger equation for each region. Identify which parts ofthe

solution represent the incoming, reflected, and transmitted waves.
(b) Useihe continuity of the wavefuction and its first-order derivative at the two

interfaces to relate the Solutions in the three regibns.
(c) Use the definitions of reflectivity and transmissivity that are discussed in

problem 2.10 to derive expressions for the electron reflectivity and transmissivity
through the barrier region.

(d) Examine the solutions and show that even if the incoming electron energy

E is lower than the Barrier height d, there is still a nonzero probability that the

transmissivity is not zero. The phenomenon that an electron with energy lower than

the barrier height can transverse the barrier is called tunneling.

2.1 2 Ele ctron energy quantization in a potential w ell of finite barrier height.
(a) Derive expressions determining the electron energy levels in a potential well

surrounded by a barrier of finite height, as shown in figure P2.12.

U=V

D

,- .r^ :-+^Janp ^^nditions at r = 0.

and A, B,C are constants to be determined from the interface conditions at 'r = 0

(b) At the interface " : ;*i#^f*flilP:,:: its first derivative must be

*r\;ffiJiii;;t#;#;tn'' a"'i"" expressions for B t A and c t A

' Potential

kr= and
2m(E-3)

hz

.

Electron

----t>

U=0

U=6

Electron

Figure P2.1 0 Figure for problem 2'10'

(b) For D : 50 A, det"rmitt" the first three energy levels for V : 0.5 eV
and I eV.o.?ffff1r;"3T.f$TlJi : r ey calculate the electron reflectivity and

2.13 Electron energy states in a quantum dot. Determine (a) the energy levels of an

electron in a cubic quantum dot of length D, assuming an infinitely high potential
barrier around the cube, (b) the allowable energy levels for D : 100 A, and

; (c) the degeneracy ofthe first four energy levels.
t: 2.14 Electronenerystatesinapotentialwire.Detenrine(a)theenergylevelsofan

I
U=0

and

"^jlffi?lt;rt= I eV and d = 1.2 ey,show thatihe transmissivity T.k zero,and also

show that v' is not #' ffi;;'"t *uv"futttion that does not carry a material

' flux is called an evanescent wave'

2.11 Etectron tunneling;;;;;;;;;;'"'ential baffier' An electron moving from lefq

in region I "".""rrJ"";;;,i,trt 
t*;; of fimte width D and bamer heis'tt electron in a two-dimensional square box of length D, assuming an infinitely high
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potential barrier around the box, (b) the allowabie energy levels for D : 50 A,
and (c) the degeneracy of the first four energy levels.

2]5 Wave function in a one-d.imensional potential well. Plot the most probable

electron distribution in a one-dimensional infinite potential well for n : 1,2,3.
2,16 Degeneracy of electron energy levels in a hydrogen atom.Ptove that the electron

degeneracy in a hydrogen alomis 2n^2.

2.17 Translational energy level. A 10 cm3 box contains a H2 molecule at 300 K.
(a) Estimate the average translational energy of the H2 molecule'
(b) How do the first few translational energy levels compare with rcsT?
(c) Can you think about a way to count the degeneracy of the translational energy

. levels corresponding to this average energy?

by discussing

of the

Energy States in Solids

So.we will start
, including lattices and the potentials binding the atoms

are packed closely, the electroa-raraxefirsrtie$
and, correspondingly, new
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3.1 CrYstal Structure

describe a
A perfect bulk crystal is a th-ree-dimensional periodic arrangement of atoms' To

crystal, we use an atoml"rJottl."-operiodic array of mathematical points that replicate

the inherent periodicity of'f'" **ui crystal' Every point in the lattice is identical to

other points. To form * ut*uf "tyttal' 
a basis tontitting of one or sevbral atoms (or a

' molecule) is attached to each lattice point' i'e'

-W:lgl-=1ruks'*-lesi' (3'1)

Theexactpositionofthebasisrelativetothelatticepointisnotimportant,'aslongas
the relarive position U"*"",, ii" U"ris and the lattice ioint is the same.for all the lattice

poinrs. Many.qlysi.al.s. tr3ye the same lattice structure; in fact, l@gnly3A+"..S*d
number oipqqibb.i*$*"";yd'il;' ;t *il first discuss the dlscriptioii of lattices in

."^iTdfu*l;mfi';;"iffiio*tion of the concept of.reciprocal lattics which is the

Fouier transform 
"f 

th";;;i t;" iutiit"' The biniing between atoms in real crystals

will then be discussed.

the from anY Point, we could

@

lattige, a1,-a2'.33...

oar

@ @

o

o
oo

Conventronat
Unit Ce116

G)o
Figure 3.1 A two-dimensional lattice' Different choices of primitive lattice v:"to:: It and a2 and

primitive unit cells (gruy o,"uJ;'" possible' The Wigner-Seitz primitive unit cell is one way to

uniquely construct a primt,#;;i' tttt"-"ii anJ al are not a set of primidve lattice vectors

and the shaded *.u i. no, u piloiiiu" unit."tt. Th'is areais, however, often used due to its reguiar

shape and is called a conventional unit celi'

'L !sJ#'cr- 1;t3'"^";[l >4 F{'ttJ-LLhtl'J{3 C"LL\,

ENERCY STATES IN SOLIDS

reach all othcr

construction

R

The magnitudes of a1, a2, and a3 are called the lattice constants. A lattice constructed

according to eq. (3.2) is often called a Bravais lattice. BirsiJixpla4ipa*yqp"ta.{$-Afg,lSf
o.qlg": W" tru* drawn two sets orprirfrif,f,Jiufii"d*tfr"tot. in figure 3.1 with primitive

unlt v""tors denoted by a1 and a2. The other set of vectors, a| and alr, are not primitive

lattice vectors because we cannot use them to construct all other lattice points by a

two-dimensional version of eq. (3.2). For example, we cannot reach point 1 through any

linear integer combination of a', and alr.

4p-ritTlW?Wgs{lie t!-elnl4llelp-pieggdengsd,F: FppriurJiv-e-l4ttic-gve9lor.s. IFgtg-
ip o.sly oqq ktqig-ggjlt (9qliY,.llgnlly 

tp. 
g4^Hild p.tr#utiy=e yryq c.gll. For example, each

of the four lattice points in the two parallelograms formed by the two sets of primitive

lattice vectors in figure 3.1 is shared by four unit cells and thus the number of equivalent

lattice points in each parallelogram is one. These are thus primitive unit cells. On the

other hand, the shaded rectangle formed by ai and ai is not a primitive unit cell because

there are two lattice points in such a rectangle: the center point plus the four corners, each

of the iatter being shared by four cells. Recause the choice of primitive lattice vectors

is not unique, there can be different ways to draw a primitive unit cell, as shown by the

two examples in figure 3. I One method to construct a unit cell the Wisner-
'.#

cell figure 3.1), w ls

,(as shown by the solid ln

*fyi$jhgfi9gg111g;r,fane.(shown by dashed lines in the figure) pg_rp_ej]{icgl,{ tg_-e,a.c,.!

connection line. The smallest space formed by all the bisecting planes is a Wigner-Seitz
cell, as indicated in the figure.

Sometimes, it is more convenient to describe a lattice by the c.o1ptgSt1ig.y.fu1gfiJ.cell.

For example, in figure 3.1, the rectangle formed by a', and a! is more convenient than
the parallelogram formed by the primitive lattice vectors. This unit cell has two lattice
points and is called a conventional unit cell. The crystal can also be constructed by
repeating such a cell.

S"gglg$l pnit gpll in lhp !,bi"e.e-dUn_ensional sp?pq i9 delignated by..thrpe-tallice
veglors 4nd the three;urgle-s fgrmed between them. In the most general case, these
,i@\'rs.-... ..'.@e]h 

-.:.':.r.:-:.
three lattice vectors are of different lengths and the three angles are all oblique, as

shown in figure 3.2(a). This lattice is called a triclinic lattice and does not have much
symmetry. the,sJsur-r.p-rrJ 9f a !a1{c9^!s cllfl _"_t-grAp}glr?9d,9y.qhg tIXT.n-g"fJ- 9,B9la.ti9ns,
gh&hjnp"l"3p-"tgtationg,l !\e glit gpll aroq.$ q fixed lattics point, reflecti-on 

.of,t_hg 
unit

"jJlu"lgne 
a specific p$4.e, .4ry!,lnversion with respgc-llo*AJal$-c€Gpjpt. A tundamental

requirement on the lattice is that one can fill the entire space by placing a primitive

.,-t1nit 
cell at every lattice point. This requirement puts a limitation on the symmetric

pperations of a lattice. For example, the allowable rotational symrnetry operations are

2r , n , 2n /3, 2n 14, and 2n 16. No lattice, however, can have 2r l7 or 2n 15 rctational
symmetry.x Given these conditions, it turns out that there are 13 other types of lattice
that have special symmetry operations on top of the n and 2n rotational symmetry of

, lSome quasicrystals can have five-fold symmetry patterns but they do not satisfy the definition of a crystal

. discussed in this section (Kittel, 1996).
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