40

NANOSCALE ENERGY TRANSPORT AND CONVER®'IN

heater. due to the temperature dependence of the resistance. This resistange
oscillz;tion at 2 leads to a third harmonic component in the heater voltage. By
measuring the phase and amplitude of this third harmonic, the te‘mperatureﬁnse
of the heater due to the modulating power input can }')3 deter.mfncd arl;i;h c;m
this, the thermal conductivity of the film can be determined. This is called the 3w
y meﬁﬁssunﬁng a power input of the form of A sin (2wt), derive an expression for
the in-phase (sine function) and out-of-
" heater temperature ris

thermal conductivity, and specific heat) of the film and the substrate are known.

iti dvantage of the 3w method is that the substrate thermal
con(c?gcg\?i‘:yas:;tg::n:}atinrﬁnedgfmm the frequency dependency C;{f‘the temperature
response under appropriate conditions. Try to identify lhcsde_ con 11t1t:ms.:.:ari SRl
(c) Another advantage of the 3w method is that the radiation loss e

mized, which is particularly important for low the:nnai conductivity ma
measurements at extreme temperatures (low and high). Explain why. . e

1.5 Thermal diffusivity determination of thin ﬁlms.: laser Pulse method. Olne me 126
for determining the thermal diffusivity of 2 thin film is to use 2 short z;:er fu; s
to heat up the front side of the film and to measure the decay of theb on z,lée
témperature by monitoring the change in reflectance of a prob'e 1aserﬁ1eam t; g
figure P1.5). The short pulse concentrates temperature drop in the film rat
than across the substrate. In this case, it is not the absolute surface tempelc'la ure
Lise that is measured but the normalized profile of the st.lrface temperature decay
as a function of time. For a heating pulse of the following profile,

0 t=<0
g =140 0<t<fp
0 t=1p

(a) Derive an expression for the temporal response of the front surface temperature,

assuming all thermal properties (thermal conductivity k, thermal diffusivity a, and
specific heat ¢) are known for both the film and the substrate.

v

phase (cosine function) componel_'ns o_f Fhe |
. Assume that all the thermal properties (thermal dlffLISWlt}",r 4
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(b) what are the requirements on the pulse width that will maximize the sensitivity
for measuring the thermal diffusivity of the film? i L
1.6 Lumped heat capacitance and time constant. Develop a lumped capacitance
model for a solid sphiere at uniform temperature 7; that is suddenly immersed
inside a liquid at temperature 7. In such a model, the temperature of the solid is
assumed to be uniform, and the heat transfer coefficient between the solid object
and the fluid is taken to be 4. Other known parameters are the surface area A,
the volume V', the density p, and specific heat ¢ of the solid. ‘
(a) Derive the differential equation governing the temperature history of the solid.
(b) Solve the equation and find the time constant of the process.
(c) Investigate how the time constant varies with the diameter of the solid
sphere.
1.7 «pT energy. One unit for energy is the electron-volt (eV). It is the energy differ-
ence of one electron under a potential difference of 1 V. Convert 1 kg T at 300 K
. into milli-eV (meV). '
1.8 Thermal conductivity of gases. Estimate the thermal conductivity of air and argon
as a function of temperature between 300 K and 1000 K at 1 atm.
1.9 Mean free path in air. Estimate the mean free path of air molecules as a function
of temperature at atmospheric pressure on the basis of (a) kinetic theory and
(b) experimental data on the thermal conductivity and specific heat of air.
1.10 Speed of electrons. Estimate the average random speed of an electron gas in a
semiconductor at 300 K. ‘

. @A Thermal conductivity of liquid. Although the application of kinetic theory to

a dense liquid is questionable, estimate the thermal conductivity of water at
room temperature on the basis of a simple derivation for the mean free path
and the results from the kinetic theory. This estimation is typically smaller than
experimental values because, for liquid, potential energy exchange contributes
to heat conduction.
1.12 Phonon mean free path and relaxation time. Given the thermal conductivity of
Si at room temperature as 145 W 1K ~!, the speed of sound as 6400 ms—!
.the volumetric specific heat as 1.66 x 106 Tm—3K~! ,

(2) Estimate the phonon mean free path in Si at room temperature from the
kinetic theory. In reality, this estimation usually leads to a much shorter mean free
path (about a factor of 10 shorter) than with more sophisticated modeling.

(b) Estimate the relaxation time of phonons in silicon. :

1]

- 143 [Fick’s law of diffusion. Using a simple kinetic argument that is similar to the : -

derivation of the Fourier law, derive the Fick law of diffusion_, which gives the
mass flux for species i under a concentration gradient as

dm;
Ji=—pD—
! 4 dx

where D is the mass diffusivity, p is the density of the mixture, and m; the local
mass fraction of species i. ' m A

- .14 Newton’s shear stress law. Using a simple kinetic érgumént that is similar to

the derivation of the Fourier law, derive the Newton law of shear stress (in

one-dimensional form). Hint: consider the momentum exchange across a plane
parallel to the flow. '
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1.15 Ene uantization. ST _ .
(gyAzsunﬂng a person weighing 100 kg trapped deep inside a two-dimensional

ditch 1 m in width, estimate the energy difference hew..'een the first and secc?nd
quantized energy levels. Compare this energy difference with the therraal fluctuation
energy «g7T for T = 300 K. % ) .

(lf) Assuming an electron of mass 9.1 x 10 31 kg is trapped inside a two-
dimensional infinitely high potential well, plot the first and secq’nd energy levels
of the electron as a function of well width between 10 and 100 A. Also mark the

thermal energy xpT-on the graph for T = 300 K.

2

Material Waves
and Energy Quantization

For macroscopic systems, we take the continuity of many variables for granted, including
the continuity in energy. For example, the heat flux along a rod through conduction,
dccording to the Fourier law, can be continuously varied to any desired value by con-
trolling the temperature difference and the material properties. The microscopic picture
of energy, however, is entirely different. According to quantum mechanical principles,
the permissible energy levels of matter (electrons, crystals, molecules, and so on) are
often discontinuous. Differences in allowable energy levels among materials are major
factors that distinguish them from each other. For example, why is glass transparent in
the visible light range but not silicon, and why are some materials electrical insulators
but others are conductors?

*"In this chapter, we introduce the basic quantum mechanical concepts necessary to
appreciate various energy states found in different materials. It should be remembered
that these energy states represent the range of possibilities for the matter but do not tell

£ - . which state the matter will be in. The latter depends on the temperature, a topic we will
“u . discuss in chapter 4. Important concepts that should be mastered through this chapter

include the wave—particle duality, the Schrédinger equation and the meaning of the
wavefunction, the Pauli exclusion principle, quantum states, and degeneracy. Solutions

- of the Schrédinger equation for various simple yet very common potentials will be

given. Key concepts and results of this chapter are summarized in the last section of
the chapter.
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@ T=1/v & (] A i:*
_E 5
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Figure 2.1 Traveling wave: (a) temporal varjation at a fixed point; and (b) spatial variation at
a fixed time. A

2.1 Basic Wave Characteristics

Let’s start by reviewing some basic characteristics of waves. We consider a harmonic

wave (such as an electric or a magnetic field) represented by a sine function traveling -

along the positive x-direction,” . 0. ¢ L fhte oo
‘_' mrx\ . » . 3 vA
LL.WMXL ® = Asin | 27vt — X §=Asin (ot —kxx)y 2.1)
Wawe fet. .

where A is the amplitude and ¥ is a unit vector in the y-coordinate direction. Such a
wave has two kinds of periodicity: one in space and one in time. The periodicity in
time is characterized by the frequency v, which equals the inverse of the period in time.
The angular frequency @ = 27 v is often used instead of frequency to avoid writing
the 27 factor. At any fixed point, the temporal variation of the field is a sine function,
as shown in figure 2.1(a). The periodicity along the x-direction is characterized by the
wavelength A,. Taking a snapshot of the field in space at any fixed time, the field is a
sine function as shown in figure 2.1(b). The inverse of the wavelength 1/Ay is called the
wavenumber. The wave represented by eq. (2.1) is propagating along the x-direction,
but the field is vibrating along the y-direction. When the field vibration direction (the
direction of the electric field oscillation or the atomic displacement) is perpendicular
to the wave propagation direction, the wave is said to be a transverse wave. When the
wave propagation and the field vibration are along the same direction, the wave is called
a longitudinal wave. The wavevector, k, represents the wave propagation direction and
has a magnitude of k, = 27/A so that for a wave propagating along the x-direction as

shown in figure 2.1(b),

X =hX (2.2)

2z
k_i:'

For the wave represented by Eg. (2.1), the constant phase plane in the x—t space is

(}}DSM l\tni{ [l @t —kex = const. (23)

*We will discuss waves in more detail in chapter 5.
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~ Figure 2.2 Standing waves, with
vanishing amplitude at the boundaries.

This constant phase plane propagates along the positive x direction at the speed

Wt Veloce ©  mpa= 2 o, 24)

d i

which is called the phase velocity. Eq. (2.1) therefore represents a transverse travelin,
wave along the positive x-direction. For such a simple wave, the constaﬁt phase lani
is also the constant amplitude plane, as is shown by substituting éq. (2.3) into (2 l)pThe
frequency and wavevector of a wave are not independent of each other. The relat.ior.lshi
between  and K, or w(k), is called the dispersion relation and may be different alonp “
different \')vavevector directions. For electromagnetic waves, we know that v is.thg =
speed of light, c, and eq. (2.4) gives w = ck. The dispersion relations for electrf)ns and
phonons are not this simple, as we indicated in table 1.3 and will discuss in more detail in
chapter 3.

Sometimes, it is convenient to use the compiex representation of the sine and cosine

functions o \“-‘o'\‘ai'\ a‘}‘\
4wtk x) o .
B, = ARG = Alcos(wrt — kex) — i sin(wt — kex)])§ (2.5)

: w!'lere i = 4/=T is the unit imaginary number. This is because mathematical operations

IWll!l the eip.oncntial function are much easier to manipulate than those with sine and

Cosine functions. In a typical mathematical operation using the complex representation er* s
: it is 1mplicit13f assumed that either the real or the imaginary part of the final solution is’ Shcie
‘the true solution to the problem of interest. Which one of the two parts is the desired | k> He
_:_soluthn depends on whether the input (such as the initial or the boundary conditions) is | tec
“in termiof a sine (ilmaginary part) or a cosine (real part). M'J\\
A .!‘{t.mdfng-wave has fixed boundary points, as shown in figure 2.2, We can create such e
z__s(;ia:edll?g wave by guperimpcsing two traveling waves along the positive and negative
f'appng:),o"s (assuming that the problem is linear such that the superposition principle

P = Alsin(wt — kux) + sin(wt + kyx)]§ = —2A cos(wr) sin(k, x)§ (2.6)

ﬁmUnlie a traveling wave, eq. (2.6) has fixed nodes in space such that ® = 0 at all
. :S. Iso, we sce thaF the _rnagnitude of ® at different locations is a cosine function
1 time. Equation (2.6) is a simple form of a standing wave. It is a good representation
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of a wave iﬁside a cavity of length D that requires the amptitude ef the wave to vanish
at the cavity boundaries, that is, ®(x = 0) = ®(x = D) = 0, which leads to -

sin (2{{ D) =0 2.7)

x
or

D=-’%}-— (n:=1,2,3,.:4) 2.8)

Thus, for a stable wave to form inside a cavity that vanishes completely outside the
cavity, the cavity length D must be multiples of the half wavelength.
The energy-contained ina:wave is usually proportional to the square of the field,

Q"WH @[ VAW Ue|®f 2.9)
[

J . . .
One can undcrstandfthis point intuitively by imagining that eq. (2.1) represents the

instantaneous displacement of a particle. Its velocity is the derivative of this dis..placement
with respect to time and the kinetic energy is proportional to the square of thls velomty.
Classically, the allowable energy of the wave can change cont.muously since there 1s
no limit on the amplitude of vibration. This picture, however, is no longer true under

quantum mechanical principles.

2.2 Wave Nature of Matter

From the previous section, we see that mm[i_s:ghamm hymfmquem-}'anﬁ
wavelength,and its energy is determined by the magnitude of the wave. We ailso know
that a particle is characterized by its energy-and momentum. Waves ar‘ld particles are
two completely different and unrelated phenomena in classical mechanics and electro-
dynamics. In quantum mechanics, however, they are interrelated and are two aspects

of matter.

2.2.1 Wave-Particle buality of Light

Quantum mechanics started with the explanation of blackbody radiation a.nd the absofp-
tion spectra of gases. By the end of the 19th century, classical Newt_o.mau mechan_lcs
and electromagnetism were well established as two separate entities: Ne‘wtoman
mechanics is based on the particle picture of materials, and electromagnensm is b‘:xsed
on the wave picture. Interestingly, Sir Isaac Newton believed that radiation was particle-
like in nature rather than wave-like, as we are more familiar with today. It was
the discovery and explanation of interference and diffraction phenomena, from the

work of Christian Huygens (1629-1695), Thomas Young (1773-1829), A}lgusr_in Jea{ll /
Fresnel (1788-1827), and others, followed by Maxwell (1831-1879) and his celebrated

equations, that solidified the foundation of the wave nature of the electromagnetic
field.

cesses, such as the experimentally observed fine spectra of absorption in various gases,
and the blackbody radiation (figure 2.3). According to classical theory, the blackbody

Gl Ty )

The Maxwell equations, however, fail to explain the emission and absorption pro-
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];L"Fmissive Power Blackbody Radiation
A\
A

4342 nm

<~ 364.7 nm

b.s ]

s \
e 5\ Continuum Theo:
y il "

",

< 4863 nm

Experiments

e

A J

‘Wavelength
@ ®)

F_igure 2.3 (a) An example of the hydrogen emission spectrum for the final state of n = 2.
Classical mechanics fails to explain discrete lines in the emission spectrum. (b) Experimental
measurement on blackbody radiation contradicts the predictions of continuum theory.

emissive power should be proportional to (AT)™3, which approaches infinity at short
wavelengths, while the experimental blackbody spectrum is reduced to zero as the wave-
length decreases, as shown in figure 1.7. The discrete absorption lines in the hydrogen .
spectrum also cannot be explained by continuum mechanics. To explain blackbody
radiation, Max Planck (1858-1948) introduced a radical hypothesis that the allowable
energy of the electromagnetic field at a frequency v), is not continuous, but is a multiple
of the following basic energy unit* i

Vioda G’—ﬂéﬁ@a ‘Ep =hv, ex;e_;igo_,{\(_a (k‘—\%)

e’

where # is called the Planck constant and has a value 2 = 6.6 x 10734 J 5. We will show
iqter how the idea of photon energy quantization leads to the Planck law. His success led
Albert Einstein (1879-1955) to consider that the electromagnetic field also has particle
(granular or corpuscular) characteristics such as momentum (Einstein, 1905, 1906).**
The basic energy unit as given by eq. (2.10) was later called a photon (Lewis, 1926).
Einstein used the corpuscular characteristics of electromagnetic radiation to explain
some puzzling results from the basic photoelectricity experiment shown in figure 2.4.
It was found that when light is incident on one of two metal electrodes separated by a
vacuum, a current can be generated in the loop. The current generation, however, occurs
only when the wavelength is shorter than a certain value. No current can be generated
for wavelengths longer than this value, even at high light intensities. This experimental
observation could not be explained from the classical wave point of view, according to
which the energy of an electromagnetic wave is proportional to its intensity, as implied
by eq. (2.8). On the basis of the photon particle concept, Einstein reasoned that one

“photon can excite an electron out of the metal surface only when the photon energy is

higher than the electrode workfunction A(= E, — E ), which is the energy difference

between electrons at the vacuum level, E,, and inside the metal, E £

hvp > Ey — Ef (2.11)

1
s

by i We_ will neglect the zero point energy in the discussion here.

**Einstein developed theories on special relativity, particle characteristics of photons, and Brownian
motion before age 26, while he worked at a patent office.
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Light Energy Level of
Electrons in Vacuum
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Fermi Level
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Current
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Figure 2.4 (a) Electron emission due to light excitation is called the photoeleclric. effect. _'l‘he
effect was explained by Einstein through the introduction of corp.uscul?: .propemcs of light.
(b) Electrons in a metal have energy close to the Fermi level and their emission out of the metal

surface into vacuum is possible only when the photon energy is larger than the work function.

Einstein reasoned that although a phaton does not have a rest mass it has.a movmg mass
determined through the relation E = me2, Its corresponding momentum is p = me =
E,/c = hv/c, such that

Mcmaen rem ¢ p="hk= ;i aﬁ"éﬁ%/ (2.12)
where i = h/(2m), This h is used more often than the Planck constant & because angular
frequency and wavevector include the 27 factor, Equations (2.10) and (2.12) are qalled_
the Planck=Einstein relations: These two relations thus relate the enezgy andmumenp{m,
which we normally associate with particles, to the frequency and wavevector, which
we .normally associate with waves./Electromagnetic radiation, Efnd thu§ photons, has
both wave and particle characteristics. This wave—particle duality of light led to the
development of quantum mechanics. Einstein also discovered many new properties-of
photons, such as stimulated emission which forms the basis of all lasers.

2.2.2 Material Waves

The wave-particle duality of light triggered de Broglie, who was a graduate student then,
to postulate that a material particle also has wave properties (Broglie, _1925). Qn the
basis of an analogy with the Planck-Einstein relations, he proposed that the wavelength:

of any particle is |
A=h/p (2.13)

*Quantum mechanics was developed by a group of young researchers. Louis de ng]i.e _( 1892-1987)
developed the material wave concept in 1923 when he was doing his Ph.D. resea.rch. He rac'ewcd the Nobel
prize in 1929 at age 38. Wemer Heisenberg (1901-1976) developed the matrix formulation of quantum
mechanics in 1925, immediately after he finished his Ph.D. thesis on turbulence in 1923, and won the l_\l{.abf:l .
prize for his work in quantum mechanics in 1932 at age 31. Paul Dirac (1902-1984) developed relativistic ©
quantum mechanics and won the Nobel prize in 1933 at age 31, Erwin Schridinger (1887-1961) developed
his famous equation in 1926 and received the Nobel prize in 1933 at age 46. -

'S -
(i
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where p is the magnitude of the particle momentum. To see how large this wavelength
is for a macroscopic object, let’s assume p = mv ~ 1 kg m s™!, leading to A ~ ]
6.6 x 1073* m which is impossible to detect even with current technology. On the
other hand, an electron with a velocity of 1 ms~! and a mass of 9.1 x 10~3! kg yields
4 & 0.7 x 1073 m; a quite long wavelength. The first proof of the wave properties
of particles came from the electron diffraction experiment performed by Davisson and
Germer (1927). -

Now let’s consider a simple example toillustrate the consequence of material waves:
Consider an electron as a wave that is situated inside a one-dimensional cavity of length
D surrounded by an infinite potential. ‘Outside this cavity, the wave amplitude must be
zero since an infinitely high potential means that no electrons can have an energy larger
than this potential height. This means that the electron wave inside the cavity must be a

standing wave and its wavelength must satisfy eq. (2.8), X

2D

A== (=123_.) (2.14)

The momentum and energy of the electron are+

nh Ny
= 5N dE”=_=— an =1,£,2,... .
Pne oD T o T om (2D) W=1,23;:..) @15)

which are discontinuous, or quantized. Later, we will derive the same result from solving -
the Schrodinger equation.

2.2.3 The Schrédinger Equation

Two basic methods have been developed to describe the material waves. The first was the
matrix method developed by Heisenberg (1925). Shortly after, Schrodinger developed
the famous equation that bears his name. These two descriptions are equivalent among
themselves, so we will focus on the Schrédinger equation (Schrodinger, 1926), which
states that the wavefunction of any matter obeys the following:

2 ENY
—ﬁvzw, +UY = iﬁ—ét—’ (2.16)

where myisithe mass, #'is the time, Uris'the potential energy constraint'that the matter is
subject to and W (¢, r) is called the wavefunction of the matter and is a function of time
and coordinate r. If U = 0, that is, a matter with no potential constraint, the Schrodinger
equation becomes

— =V, = ih— 2.17
2m . ' . at ( )

One may think that the equation is a parabolic type of equation similar to the transient
heat conduction equation [eq. (1.19)], but the “magic” imaginary unit i really gives
Tise to wave behavior. Schrodinger himself did not come up with an explanation for the

Emeaning of wavefunction. The right explanation was given by Born, who suggested that
"Wy itself'is not an observable quantity, but that ¥, \U¥ is the probability density function
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to find the matter at location r; where “*” means complex conjugate. The normalization
requirement for the probability function is then

o0
f U = 1 2.18)

—0

for the one-dimensional case. For three-dimensional problems, the integration should
be over the volume. The probabilistic interpretation is difficult to appreciate since we
are most used to deterministic events in mechanics. Einstein, and even Schrodinger
himself, rejected this interpretation. However, this interpretation has endured the test
of experiments and time. Since Wy} is a probability, the quantum world is full of
uncertainties. Any quantities, such.as energy, momentum, and location, are no longer a
deterministic quantity but have an average, or expectation, value and uncertainties. The
expectation value (or most probable value) of any quantity can be calculated from

(R2) = f QW dx (2.19)

-0

where () is the expectation value and €2 is the operator for this quantity. The operators

for position, momentum, and energy of matter are

position operator:

Q=r (2.20)
momentum operator:
Q=p=—ihV
L 8a 0 L0 (.21
= —iht (g;x + ayy + BZ.Z)
= pxX + py§ + p:Z
and the energy operator:
2
qem=Ealigy. Ty -
2SS, 2m 2.22)
mvz i K 33+31+£)+U
=T om Y= T om a2 dy? = az? )

The first term in eq. (2.22) corresponds to the kinetic energy operator and the second
term to the potential energy. In classical mechanics, the kinetic energy plus the poten-
tial energy of an energy-conserve system is called the Hamiltonian of the system. In

quantum mechanics, the Hamiltonian becomes an operator, according to eq. (2.22). In’

a Cartesian coordinate system, the gradient operator V and the Laplace operator V2 are
given by

3 3 a8 it SgE et g
=t f—Fi— V==t =+t (2.23)
= dx +}3y +zaz’ ox? i ay? ' az?

{
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The differentiats in the operators are applied to the function immediately following the
operator: Thus the order cannot be exchanged, which is similar to the matrix operation.
Heisenberg’s matrix formulation of quantum mechanics naturally possesses such char-
acteristics. In eq. (2.19), ¥/ QW; inside the integral means that the operator 2 is first
applied to W, and the obtained function is multiplied by W;. As another example,

AN 8°w
pepx¥y = —ih—— (—ma—x’) = —h? ax2t (2.24)

which explains the way of expressing H in terms of p in eq. (2.22).

The Schrodinger equation is time dependent. When the! potential energy is inde-
pendent of time, we can derive the steady-state Schrodinger equation using, the
separation-of-variables method: Assuming W,(r, 1) = W(r)Y(z) and substituting into
the Schrédinger equation, we get

1 K2 14y
NV LY | =ih——— = 2.25
7 { 2 ] e : 2:25)
where E is a constant (eigenvalue) since W depends on r only and Y depends on ¢ only,
and its meaning will be explained later. Solving for ¥ leads to

E ' -
Y = C exp I:—igr] : (2.26)
The governing equation for \W(r) is called the steady-state Schrodinger equation

hZ
VL (U —-E)¥ =0 (227
2m

This is an eigenvalue equation-with the eigenvalue E and eigenfunction W determined
by the potential energy profile U and the boundary conditions. On the basis of egs. (2.19)
and (2.22), we can prove that the expected energy of a system'is

(H) = f W HWYdx =E: (2.28)

—00

So the separation-of-variable constant E, or the eigenvalue, actually represents the
energy states of the system. Correspondingly, we could write the time-dependent part as
Y = e7i®" with E = hw.So the material waves obey the Planck-FEinstein relation,
eq. (2.10). ]

Because W, W/ is a probability and the physical observable quantities are only the
expectation values, there are also standard deviations for these expectations, such as the
standard deviations in location Ax, momentum Ap, energy AE, and time At. It can
be proven that, for any solution of the Schrodinger equation, the following relationship
holds

Ap;eAx >h/2 and AE eAt>h/2 (2.29)

This is the famous Heisenberg uncertainty principle, which means that position and
Tomentum, or energy and time, cannot be accurately determined simultaneously in
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the quantum world. Because } is a very small number, the uncertainty represented by
eq. (2.29) for a macroscopic object is very small. For example, if we decide that an object
with a momentum of 1 kgms~" has an uncertainty of 10~!* kgms™", the correspond-
ing uncertainty in determining its position is ~ 10-2* m, a negligible quantity. This
uncertainty, however, becomes quite appreciable for small particles such as electrons.

For our further use, we need also to have an expression for the flux of the matter
being considered. This can be obtained by (1) first multiplying the Schridinger equa-
tion, (2.16), by ¥, (2) taking the complex conjugate of the Schrédinger equation and
multiplying the obtained equation by Wy, and (3) subtracting the two resulting equations,
which leads to

(2
al” v .5=0 (2.30)
at
where J is
J= %(\p,v\p;‘ — WV (2:31)

Since the first term in eq. (2.30) is the rate of the change of the probability of finding the
matter at each location, the second term in eq. (2.30) must be the netrate of matter flowing

out of the peint. Equation (2.30) is the particle conservation equation and J [m2s1]is.

understood as the current density (or flux) of the material wave.

The wavefunction is a difficult concept to grasp at first sight and this is not strange,
since even Schrédinger himself was not able to explain the meaning of the wavefunction.
However, Schrodinger was successful in using the equation to show that the energy states
of electrons are quantized, as we will see later. Born’s explanation of the wavefunction
products W, W as a probability density of matter implies that material particles have
spatial extent with some ambiguity, as we will see from the example solutions of the
Schrodinger equation.

2.3 Example Solutions of the Schrodinger Equation

Tn this section, we will give solutions to the Schrédinger equation for several important
cases that we will use later.

* 2.3.1 Free Particles
A free particle is one that it is not subjéct to any potential constraints; that is, U = 0.
We can think of this free particle as a free electron. For the particle traveling along the
x-direction, eq. (2.27) becomes

)

2 12 ‘
f;__‘fi ‘Z _EU=0 (2.32)
m ax 3

The solution of the above equation is

W(x) = Aexp(—ikx) + B exp(ikx) (2:33)
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(2) {b)

Figure 2.5 (a) One-dimensional potential well with infinite potential heights on both sides and
zero potential inside the box. (b) Particle energy quantization in the box and wavefunction for the
first three levels.

where k = y/2Em/h2. When combined with the time-dependent factor, eq. (2.26), the
time-dependent wavefunction is found to be

Wy (x, 1) = A~ @HD) 4 gomitwr—hn) (2.34)

where C] in eq. (2.26) is absorbed into A and B. The first term represents a free particle
traveling in the negative x-direction and the second term along the positive x-direction.

Interested readers may ask what the Heisenberg uncertainty principle means for
a free electron with a given momentum and energy. Equation (2.34) shows that the
wavefunction for a right traveling wave extends from x = —co to x = oo, with equal
probability everywhere, which means that its position is not determined at all. Similarly,
the wave has fixed energy but spans time from negative infinity to positive infinity, that
is, the whole time history. Thus, the Heisenberg uncertainty principle holds true for this
simple case.

2.3.2 Particle in a One-Dimensional Potential Well

On the basis of the requirement for standiﬁg waves, we derived eq. (2.15) which shows the
quantization of the allowable energy levels for a material wave inside a one-dimensional
cavity of length D. Now let’s start from the Schrédinger equation and demonstrate that

" eq. (2.15) is a natural solution of the equation. We consider the case of a particle in a

one-dimensional potential well, which can be, for example, an electron subject to an

electric potential field as shown in figure 2.5(a). The steady-state Schrddinger equation

for the particle in such a potential profile is

08 h? d2W
2m dy?

The solution of the above equation is

+(U—-E)W¥=0 (2.35)

_ [2mE [2mE
(. W=Aexp {—m a_i] + Bexp I:x‘x %} (for0<x<D)  (2.36)
n. I

W = 0 (for other x where U — o0) (2.37)
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The general boundary conditions are the continuity of the wavefunctions and their

first-order derivatives at the boundaries. The continuity of the wavefunction states that

the probability density of finding the matter cannot be double valued at the same loca-
I} | tion. The continuity of the first-order derivative of the wavefunction can be derived by
integrating eq. (2.16) over an infinitely thin control volume encompassing the boundary,
and this condition implies the continuity of the particle flux. For the current problem,
the continuity of the first derivatives is not required because the wavefunction at the
boundaries is already known to be zero. Applying the continuity of the wave function
forx =0and x = D, we haveat x =0

A+B=0 (2.38)

o[ [amE] [2mE
Aexp|:—iD —hz—:|+Bexp|:jD ?]=O (2.39)

Simultaneous solution of egs. (2.38) and (2.39) yields

atx =D

o wmE\ - .
so that multiple solutions for E exist at
2mE,
D | th =nz  (n=123.) (241)

Here we take only positive values of n since the negative values give the same electron
probability distribution functions and are thus identical to the positive solutions. The
value n = 0 is excluded since taking this value will lead to ¥ = 0, which means no
particle exists inside the region. The integer n is called the quantum number. Each n
corresponds to a wavefunction and an energy level. For multidimensional problems,
which we will encounter later, there will be more quantum numbers, including the spin
quantum number for electrons. From eq. (2.41), the allowable energy levels are

T (a1 ()
= —} =— === =T1:2:3,... 2.42
En XN E= ( D ) 2m (21)) (=123, .. ) (222)
‘which is the same result as eq. (2.15). The material wave function inside the potential
well is y

w, = ~2iAsin () (2.43)

To find the coefficient A, we use the normalization condition

==}

f W, Widx =1

—00

(2.44)

CNoI=-

BIRS: TR = T2 e Tnen
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+/2D, and thus i

W, = \/z sin (?ﬂ) (2.45)
D D :

These wavefunctions are standing waves, as shown in figure 2.5(b). The separation

between successive energy levels depends on the width D of the potential well, the

mass, and the order of the energy level. When D is large, the energy separation is very

small. The observation of such energy separation requires sensitive tools that can discern

small energy separation. When the energy separation is larger than the thermal energy

fuctuation, the guantization effect can be easily observed. For electrons with a small
mass, this requires in general that D is smaller than 100 A. ‘

Let us now show that the Heisenberg principle is satisfied for n = 1. The most

probable position and the standard deviation in its position can be calculated

following eq. (2.19):

which gives A

D D
_ . iy Lo (WX D
(x) _Df\plxqfldx =4A O/xsm (F)dxz = (2.46)
D 1/2
Ax = {(x — ()P = f Wi (x — (x))*W1dx
]
T
L5 @247

Similarly, the most probable momentum and the uncertainty standard deviation in its
momentum are

odyy
= - \-L" ﬁ— —4
(p) f jih——dx =0 (2.48)
0
D . 1/2
Api= {lp 2 lpH2Y2 = f\p:_sz‘l‘i _zh
p=((p—(p))7) J (A —7dx b (249

From egs. (2.47) and (2.49), we obtain AxAp = 0.574, thus satisfying the Heisenberg

- uncertainty principle. This example shows although the electron at n = 1 energy level

is most probably positioned in the middle of the potential well (x = D/2) and has zero
average momentuin, it can also be at other locations, as the wavefunction suggests. '

s Although the above solution for an electron in a potential well is one of the simplest
solutions of the Schrodinger equation, the experimental realization of such a system came .
only in the 1970s, after the concept of superlattices was proposed (Esaki and Tsu, 1970)
and the molecular-beam-epitaxy (MBE) thin-film growth technique was invented. The
MBE technique allows the controlled growth of thin films to an accuracy of one atomic

layer or less. Since then, studies of man-imade quantum structures have become one of

~“>M€t£ow(as«€a \S © conpfa of
»v'-ahafs_jc&. Z}f wrwz cepy ) .o
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On the basis of the allowable values of ¢ and B, we can determine the allowable
energy levels as :

(2 4ty :
Eegp = R (e,vn = Iy 2y 0a ) (E2._1.10)
. Corresponding to each set of £ and n, there is a distinct wavefunction
. ynmxy ., [Emy
Wy = Ceasin (—5) sin (F) (B2.1.11)
We can further determine that the constant Cy, = 2/D using'norma]ization

condition 2.44)

Comment: For the above two-dimensional problem, we obtain two quantum numbers
£ and n. Typically, the number of the quantum numbers is identical to the dimen-
sionality of the problem. For a three-dimensional problem, there are three quantum
numbers, as we will see later. Bach set of quantum numbers determines a unique
wavefunction. The energy levels for different sets of £ and n, however, can be
identical. For example, the wavefunction corresponding to £ = 1and n = 2 has
the same energy as that corresponding to £ = 2 and n = 1. These states that have
different wavefunctions but the same energy are said to be degenerate. '

2.3.3 Electron S-pin and the Pauli Exclusion Principle

Each wavefunction obtained from the Schrodinger equation, as exemplified in the
previous sections represents a possible quantum mechanical state at which a particle
can exist under the given potential. The solutions of the Schrodinger equation, however,
do not tell the entire story regarding the quantum state of a particle. For example, the
equation cannot predict the spin of a particle. The spin is a property that preserves the par-
ticle’s rotational symmetry and can only be derived from relativistic quantum mechanics,
developed originally by Dirac. It is an intrinsic property of the particle and should not
be understood, simply for example, as the rotation of an electron around a nucleus. For
electrons, corresponding to each wavefunction obtained from the Schrodinger equation,
there are two quantum states (or two relativistic wavefunctions), which are usually
denoted by an additional quantum number s that can have the following values

(2.50)

5= or —

| =
[ S

where s = 1/2 is called spin up and s = —1/2 is called spin down. The spin quan-
tum numbers for other types of particle are different. Interested readers should consult
quantum mechanics textbooks (Feynman, 1965; Cohen-Tannoudji et al., 1977; Landau
and Liftshitz, 1977).

We can combine this spin quantum number with the wavefunctions obtained from
the Schrédinger equation to denote the complete set of wavefunctions that a particle can
have. For an electron in a one-dimensional box, the wavefunction can be denoted as
W, ;. Each set of quantum numbers  and s represents a quantum state. For each n, there
are two quantum states (s = 1/2 or s = —1/2) with identical energy. The number of
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wavefunctions, that is, the number of quantum states, at an identical energy level is called
the level degeneracy. Thus, the electron in a one-dimensional box at any energy level
n has a degeneracy of two. The Pauli exclusion principle says that each quantum state
can be occupied by at most one electron. This principle determines how the allowable
energy levels, such as those given by egs. (2.42) and (E2.1.10), will actually be occupied
by electrons. Although eq. (2.42) [or (E2.1.10)] is derived under thé assumption of one
é]ecn‘on in an infinite potential, the solution should be valid if there is more than one
electron inside the well, under the approximation that the interactions of these electrons
do not change the potential profile. From the principles of thermodynamics, we know
that electrons tend to occupy the lowest energy states. If there are five elect;‘ons in the
potential well and the temperature is at absolute zero (to avoid thermal fluctuations)

two electrons will take the lowest E energy level (W1, 1/2 and Wy ) /2 quantum states),
and another two will occupy the next lowest level Eo (W3 ¢ /2,\112,_1 /2 quantum states)i
The fifth electron will occupy either the W3 17 or the \Ila_,_l /2 stz;te. The occupation of

. aguantum state at non-zero temperatures will be discussed in chapter 4.

| et SEY I VP b
2.3/4 Harmonic m—% g ) LM T’Q‘.&“M

S E.o(b-.u.

’I‘wo main factors govern the Schrédinger equation and the consequent energy eigen-
values and wavefunctions: the potential distribution and the boundary conditions. The
rectangulat potential profile for the particle-in-a-box (problem discussed in section
2.3.2) gives energy eiger_walues that depend on the square of the quantum numbers
as represented by egs. (2.42) and (E2.1.10). In this section, we will study the energ):
levels and eigenfunctions of a harmonic oscillator, which-is a very useful model for
d.cscribing the atomic vibrations in simple molecules, such as Hy and CO, or the atomic
}rlbrations' in solids. We can appreciate this by considering the general shape of the
interatomic potential, shown in figure 2.7(a). If the vibrational a.mpliiudé of the atom is
not large, we can expand the potential around the equilibrium pbsition, X0, such that

Uy =Ux Sl 0= ’ \3
) =Ueo+3 | 5| - 4 016~ %0} 25D)
? o A Energy Bigenvalues
A et For A Harmonic Oscillator
Harmonic Potential
Approximation r Y - 1=3, E=hv+E,
:_In‘teratomic v hy
Distance x’ x n=2, E;=hv+E,
< hv
) v
¥~ Attraction ———— =, E=hviE,
hv
v
i —Y 0,Eshv2
Equilibrium Position i
(@) (b)

Figure 2.7 (a) The harmonic oscillator model approximates the potential at equilibrium by
a parabola. (b) The energy levels of a harmonic oscillator.
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where we have" used the fact that dU/dx’ = 0 at the equilibrium point x’ = xo (.the
minimum of a curve). Neglecting the higher order term O[(x’ — x0)3], the force acting
on the atom thus becomes ‘

= —dU/dx' = K" —x0) = —Kx (2.52)

where x(= x' — x() represents the displacement from the equjlif)ﬁum position rather

than the separation between atoms, and K = (d2U/dx"*)z=xis the spring constant
such that U = Kx2/2. This potential represents a classical mass—spring system, the
Schrédinger equation for the system is

nZ d2w Kx?
_— . 4= —-E|¥=0 (2.53)
2m dx? i ( 2 )

Boundary conditions for the above equation are
W(x — c0) =¥ (x > —o0) =0 2.54)

because as x — =00, the potential U — oo, which requires vanishing wavefunction
values in these limits. Solving eq. (2.53) involves a coordinate transformation and a
series expansion, and will not be pursued here (see Landau and Lifshitz, 1977). Final
results for the energy levels and wavefunctions are :

1 1
- = = (i = =0;1,2,.:: 2:55
GN” h E, (n+2)hu (n+2)ﬁw n=0,1,2 ) (2.55)

1
me 1 1P mwx?\ % mewx?
'.f’n(X)=I:‘/;€ﬁ:| H, ( A ) exp(— =% ) 2.56)

where

fim 2.57)

2z ¥ m
w = 2mv is the angular freqﬁency; and H, is a standard function called the Hermite
polynomial, given by E
dﬂ

-2
T [exp(§ )] (2.58)

Hy(€) = (=1)" exp(¢?)

We see that v is the fundamental vibration frequency that we get from classical
mechanics for a mass—spring system. In classical mechanics, however, the mass—spring
system energy, which equals the sum of the kinetic and the potential energy, can be a
continuous function of the amplitude of the oscillator. Equation (2.55) says, however, that
the energy of the harmonic oscillator is quantized and can only be a multiple number of
hv plus %h v, which means thatthe separation between adjacent energy levels is constant
and equal to hv, as shown in figure 2.7(b). The Jhv term in eq. (2.552) is called the zero
point energy, which is unimportant for most heat transfer problems. It is a manifestation

of the Heisenberg uncertainty principle. In figure 2.8, we show the wavefunctions (W) :
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Figure 2.8 (a) Normalized wavefunction and (b) normalized probability distribution for a
harmonic oscillator.

and the probability density distributions (I|2) of the harmonic oscillator states. The
latter shows the probability of finding the vibrating atom at position x. As the quantum
number n increases, |¥|? spreads wider which means that the potential energy grows
with increasing n. The kinetic energy also increases with increasing n.

. The harmonic oscillator model is important for understanding the absorption char-
acteristics of gases in the infrared spectrum. When a photon ‘interacts with the gas,
absorption occurs only when the photon energy equals the energy difference between
the final state and the initial state of the molecule,

Ep=hv,=Ef—E; (2.59)

where the subscript p represents photons. For the vibrational modes of a molecule, eqs
(2.55) and (2.59) lead to v, = vAn. Further quantum mechanical consideration limits
An = £1 (the minus sign corresponds to emission), which is called the selection rule.
Thie absorption or emission of a photon occurs when the photon frequency equals the
molecular vibration frequency (also called an absorption line),

L /X (2.60)

Vp = —
P oV m

The relative vibration of atoms in a polyatomic molecule can be modeled as a har-

‘monic oscillator. When applying the above expression to a diatomic molecule with two
- atoms of mass m) and m2, the reduced mass should be used,

mimy

S 2.61
S 2.61)
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Figure 2.6 (a) Quantum well laser (Yariv, 1989; courtesy of Wiley). (b) A carbon nanotube

(courtesy of Dr. Z.E. Ren). (¢) Ge quantum dots in silicon (Liu et al., 2001).

the most active areas of research. Figure 2.6(a) shows a practical quantum well made
of a very thin solid layer of gallium arsenide (GaAs) semiconductor. It is sandwiched
between other materials in which the potential energy for the electrons is higher than
that in the GaAs layer. The allowed electron energy states inside the GaAs layer become
discrete. This quantum size effect has been used to make better semiconductor lasers and
detectors. In addition to thin films, in which the quantum effect occurs in the direction
of film thickness, other quantum structures, such as quantum wires, carbon nanotubes,

and dots (quantum dots), are also being actively studied, as shown in figures 2.6(b)and 3

(c), respectively. The potentials in the surrounding for these cases may not be infinite

as in the preceding simple example. Thus, the energy levels may be more complicated E

than given by eq. (2.42).

Exémple 2.1 Electron énergy levels inside a square nanowire

Determine the allowable energy levels of an electron in a two-dimensional square
quantum wire, assuming the potential inside the quantum wire is U = 0 and outside

is U = oo.

v

. Solution: We establish a coordinate system as shown in figure E2.1. Clearly, outside
" the potential well, we have ¥ = 0 because U = oco. We thus focus on the solution 28

inside the potential well. The Schrodinger equation inside the well (U = 0) is

_hi 2w 9w
2m \ 9x2 ' 3y?

with the following boundary conditions

x=0o0rD, ¥=0 (E2.12) &

y=0o0rD, V=0

We use the separation-of-variables technique. Assuming ¥ (x, y) = X (x)Y(y) and .:-:, :

substituting into the above equation lead to

1d2X+lsz+2mE_
X dx* ' Ydy? R

)—E\If:O (E2.1.1) %

0 213 &
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Figure E2.1 A square potential well.

_. In this equation, the first term depends on x and the second term on y. The third

term is a constant. This leads to the requirement that both the first and the second
term must be a constant. Since E is positive, we can show that neither of the first

two terms can be positive (see what happens if you assume one of them is positive)
Thus, we write )

142,
X a2 (E2.1.4)
1d%v 5 .
il R
Y dyz :
The solution for X is
X (x) = Asin(ax) + B cos(ax) (E2.1.5)

.To satisfy the boundary condition that ¥ = 0 at x = 0 and x = D, we must have
ASX = Oatx = 0and x = D. Applying these boundary conditions, we see that

ni

a=2 m=12..) (E2.1.§):
q nmw
Xn(x) = Ay sin (Ex) (E2.1.7)
Similarly, for ¥, we have
= £
== #=12..) (E2.1.8)

[t
Ye(y) = Bgsin (%y) (E2.1.9)
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gL
i&, Hi In diatomic and polyatomic molecules, the atoms can vibrate relative to each other
4 i Symmetric Asymmeric Bending or rota?e as a whole. The relative vibration can be treated by the harmonic oscillator
18 ?t;gtfhm.% ﬁ;‘;;“h’“.g: (ycldizzions approximation. Let us consider the rotation only and assume that the distance between the
cr cm double dege,fmy) ~ twomasses of a diatomic molecule is constant (rigid rotation), as shown in figure 2.10(a).
663 cm .In cI:ass1ca1 mechanics, a quantity often used to describe the rotation is the moment
(b) CO, Molecule - of inertia. For the two-mass system shown in figure 2.10 rotating relative to its mass

Figure 2.9 Vibrational normal modes of (a) HyO and (b) CO2 molecules. Arrows represent atom

vibration direction at one instant.
—

w2 P

— 'Zt"-ﬁ-‘-\ ] R"{Tﬁ ——
Consider, for example, an Ha molecule having K = 1113 Nm~! and a reduced mass
of 1.67 x 10-27 kg. The corresponding vibrational frequency is 1.319 x 10 Hz,
or, in terms of wavelengh, A = 2.3 wm, and wavenumber, n = 1/A = 4401 cm™
(wavenumber equals the inverse of wavelength). Experimentally, we can determine the
absorption frequency using Spectroscopy techniques and thus use eq. (2.60) to estimate
the effective spring constant of the interatomic bonds in such molecules.

For polyatomic molecules (larger than two atoms), there exists more than one
vibrational frequency. In general, the complex vibrational patterns can be decomposed
into normal modes. Each normal mode can be thought of as one harmonic oscillator with
a corresponding fundamental frequency. Examples of the normal modes for water and
carbon dioxide (COy) are shown in figures 2.9(2) and (b). These fundamental normal

modes can be superimposed to form new absorption lines. For example, the difference

between the asymmetric and symmetric stretching gives the familiar absorption line of
| warming because this absorption line

CO; at ~ 10 ywm, which is a major factor in globa
is near the peak of terrestrial thermal radiation. A
The harmonic oscillator model also represents quantized electromagnetic fields and

atomic vibrations in solids. For an electromagnetic field at frequency v, the allowable

energy levels are |
Ep=hvp(n+%) n=0,1,2,..) o (2.62)

field having frequency Vvp. This éxpfessioh is
the quantized electromagnetic field eq. (2.10).
ations in a crystalline solid can also

where n is the number of photons in the
consistent with our previous discussion on
In the next chapter, we will show that atomic vibr
be decomposed into normal modes an
as well.

d that the energy of each mode obeys eq. (2.62).

center, the moment of inertia is

i mlmzrg

N (2.63)
where rg is the effective separation between the two atoms. In classical mechanics, we
often use the angular momentum equations to solve rotational problems. In quantum
mechamcs., there are also corresponding angular momentum equations that govern the
w'avefunctlon.s and energy eigenvalues for rotation. Here, we will skip the details but
give the solutions for the wavefunction (Landau and Lifshitz, 1977)

(2€ + 1)(€ — |m)!

! ) 1/2
Y7, )=eif[ a .

cnl 4 (£ + |m|)! i Con i (2:69)
 and ¢ are polax;n and azimuthal angles, respectively, in a spherical coordinate system,
where ¢ = (—=1)" form > Oand e = 1 form < 0, and P is the associ_ated Legendre

polynomial

(1- 52)’-"/2 dbtm

28gl  gEttm € -1

P =

The functions Y;*(9, ¢) are called the spherical harmonics. The energy eigenvalues are

2

Ey=—t+1)=hBet+1) (for|m| <£,€=0,1,2..) (2.65)

21
where B = h ;(@;:21) [Hz] is called the rotational constant. For Hp, B = 1.8 x 10'? Hz.
'};‘be corresponding wavelength for this rotational state alone is very small (~ 100 pm).
Because ﬂn?re' are two degrees of freedom for the rigid rotational motion (polar and
azimuthal directions in a spherical coordinate system), we see that two quantum numbers

_emerge, that is, £ and. m. Each set of £ and m gives a unique wavefunction and thus a

unique quantum state (spin quantum number not included). The energy levels given by
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eq. (2.65), however, do not depend on the magnitude of m. For each £, there are (2¢+1)
values of m, that is, (2¢ 4 1) wavefunctions having the same energy level. The energy
Jevel Eg is thus (2£ + 1)-fold degenerate, similar to the degeneracy of a particle in a
two-dimensional box discussed in example 2.1, because there are (2£ + 1) rotational
orbits. We use g to denote the degeneracy s0 that, for the rotational level at energy Ee

we have

g(8) =20 +1 : (2.66) 48 {"_-i-

Similar to the case of harmonic oscillators, the photon absorption by rigid rotors
occurs only when the separation of the energy levels of the oscillators matches the
photon energy. The selection rule in quantum mechanics further limits the photon to two

adjacent energy levels (AZ = 1),
vp = (Eeq1 — E)/h=2BE+1) 2.67)

where B in the unit of wavelength is of the orde
thus pure rotational modes have long wavelengths and are typically unimportant in
thermal energy transfer, but they can be i
diatomic molecule can have both vibrationa
their allowable energy states as the superposition of the rotational and
levels, forming vibrational-rotational states. Assuming, for simplicity, that the rotational

and vibrational motions are independent, we can then write

1 and rotational modes, we can approximate

E(vib + rot) = En (vib) + Ee(rot) 2.68) 3

and, correspondingly, the absorption lines of the combined vibrational-rotational states

can be written as
vp=v£2B(¢+1) (2.69)
where the positive sign means that accomp;

level due to the photon absorption, the ro
while the negative sign means that the rotationa

tational energy also increases by one level,

tines with fine structures due to molecular rotations are fo
due to various broadening and interaction mechanisms
that the absorption of gases effectively occurs over certain bandwidths (called bands),
rather than only at sharp discrete lines.
CO, molecules at 0.5 atm and 300 K.

2.3.6 Electronic Energy Levels of the Hydrogen Atom

The vibrational and rotational energy
motion of polyatomic molecules. Now let's consider the electronic !

atom. We use hydrogen atom as an examp
the nucleus: The solution we will find, however, can be use
the energy levels of other atoms having multiple electrons.

nergy levels of an

d as a basis for understanding

r of 100 pm for hydrogen molecules; . ¢
mportant in the microwave range. Since a 8

vibrational energy -3

Y |

anying the increase of the vibrational energy

| energy decreases by one level. Thus, 33

surrounding each fundamental vibrational frequency v of polyatomic molecules, spectral 3
med. These lines often overlap 4
(such as thermal vibrations) so b _

: 5

Figure 2.11 illustrates the absorption bands of 7

levels that we previously obtained are forthe atomic %
le since there is only one electron surrounding’

The nucleus of a hydrogen
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4.3

27

2.0

Absorptance

20 10 3 2.5 2 1.67
Wavelength, A (um)

igu1 e 2. I l Vibrational—rotational absor ption bands of molecule. Wi 9
F CO. i
. ). 1) 1 les (Slegel and Ho e].l, 1 92;

atom can be treate_d as stasionary because its mass is relatively heavy compared to that of
the electron. The interaction between the nucleus and the orbiting electron is governed
by the Coulomb electrostatic force ¢

1
Frm =g (2.70)

thfg c1 = (:22 /4_71250 a111d the electron charge is e = 1.6 x 1071°[C], while gg = 1.124 x
10 /4 [C*m™< N7"] is the electrical permittivity of the vacuum. The potenti;il is
b oo

U= der =L @.71)

r
r

Since the nucleus is stationar; i igi )

. y, we can take it as the origin of the coordin

TR 34 - a

Schridinger equation then becomes : : oy

B RN A ]
S A (‘7:— E) =0 2.72)

Ini spherical coordinates, the Laplace operator is

- 19 d 1 : 1 e

it LRl

& 2o " ar) T 2w 06 \"%96 ) T Fante 50 1)
_The solution of eq. (2.72) can then be : i

e { (2. n be separated into di i
.El_tp spherical harmonics Y;" (Griffiths, 1894) B e

Wnem = Rue(r)Y" (8, ¢) (2.74)
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Figure 2.12 (a) and (b) Amplitude square of spherical harmonic functions in po_lar cuordjnaw__ﬂ.
The ¢ direction is axisymmetric around the § = 0 axis and (c) normalized radial wavefunction

of the hydrogen atom.

where Y;" is given by eq. (2.64). Because of the three degrees of fl't':-ed()ﬂ.:l in space, th'erc
are three quantum numbers 7, £, and m in the Waveﬁ.lnction._Wfa w111 ;k.lp the analytical
expressions for the radial wavefunction, but give a few graphical examples of Rne(r)
and |er” |2 infi guré 2.12. The allowable energy levels of the gleq;ron—nuqlc?us system are

g — -2 L _136eV S 1 n>e+1,and|m|
" 2he? B ‘
<£,£0=0,1,2,..) (2.75)

where n is an integer called principal quantum number. We note that the energy levels
depend on r but noton £ or . The allowable values of £ and m are, however, restricted by
the value of n. Let us recall the concept of degeneracy: this means that the energy levels
are degenerate. The three quantum numbers are as follows: n is the principal quantum

number, £ is the quantum number of total angular momentun, and m is the magnetic |

quantum number. Corresponding to each set of n, I, m quantum nu‘mbers,_ there are two
wave functions Wy 1,m,s, Where s = +1/2 is for the electron spin, which determine
two quantum states. For n = 1, the allowable values for ¢ and m are 0. The wave

functions for this set of n, I, m values are Wy 0,0, and are called the 1s-orbital (s-shell), :
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4s0 Sp ad n=3 (ls5eV)

s _ZL n=2 (-34¢eV)

1s

— =1 G1seV) Figure 2.13 Mlustration of first three energy

levels of the hydrogen atom.

where “1” in front of s represents n = 1 and “s” following 1 represents £ = 0. Since
a maximum of one electron is allowable for each quantum state (Pauli exclusion
principle), the Is-orbital can have a maximum of two electrons as a result of the two pos-
sible values of the spin (s = 1/2, —1/2). For n = 2, the following values of £ and m are
possible : \ :

=0 m=0 2s orbital
n=2-—
=1 m=-1,0,1 2p orbital

Two electrons are allowed for the 2s-orbital and six electrons in total are allowable for
the three quantum states in the 2p-orbital (p-shell). A total of eight electrons is thus
allowed for the n = 2 states. In general, the degeneracy for a hydrogen atom of any
arbitrary n is '

g = 2n* ' (2.76)

Figure 2.13 shows the energy levels of a hydi'ogen atom. An alphabetical symbol is
assigned for each value of £, which is inherited from the historical studies of absorption

* . spectra of hydrogen before quantum mechanics was developed:

L=0os;f=lep t=2ed =36 fil=4cg

The allowable hydrogen energy levels provide a framework for understanding the
periodic table. Since the electron—ion interaction dominates the potential, the existence
of miore electrons in other atoms does not alter very much the major picture of the
allowable energy levels and we can assume that the energy levels of a hydrogen atom

~ lso apply to other atoms for qualitative understanding. As a start, let’s fill the electronic

??!!it’.':rgy states, as shown in figure 2.13, according to the thermodynamics principle that
the lowest level will be occupied first and each quantum state can have at most one

| electron. The one electron in hydrogen will occupy one of the two 1s orbitals. The two
electrons in a helium atom will fully occupy the two 1s quantum states. Lithium has

i, !
thrée electrons and the first two will fill the 1s-orbital and its third electron will fill one

Bvijie

2s-orbital, and so on.

I “Table 2.1 lists the electron orbital occupancy of elemental atoms. Up to the argon
fom, it is always the case that quantum states with smaller orbital guantum number
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(I : s ber can accept other electrons or lose electrons to form a more stable state. For
d i i ts in the periodic table pum . : b
i | Table 2.1 Electron configuration of first 30 elemen's 2 example, the Hy molecule has two electrons sharing the two 1s quantum states in the
*%' | Electron Configuration hydrogen atom, such that each atom “feels” that it has two electrons. In various acids,
:‘dl i Atomic i %) 48 A g the hydrogen atom' is also happy to give up its electrons. We call the electrons in the
i}i f Ii Number Element 1s s 2p 3 3p 3 s outermost principal orbitals the valence electrons. T
oL | - . : -
E} || 3 1 H hydrogen 1 Using eq. (2.75), we can calculate the absorption lines of hydrogen atoms as
iai L He helium ? ; :
“] b 3 Li lithium 1 hvp (n1 — na) = 13.6 (;5 = ;) eV 2.77)
R 4 Be beryllium 2 _ 3 !
JJ il 5 B boron 2 1
gl N 6 C  carbon Filled 2 2 Example 29
Iid 4 . 3
E.l |_| H 7 N nitrogen (2) 2 .
7 |l : 8 O oxygen 2 4 Determine the photon frequency and wavelength for series of allowable emission
.: [ 9 F fluorine ; g from all other states to the n = 1 states from the hydrogen atom. This series is called
1y o 10 Ne neon the Lyman series.
M' |I M 11 Na sodium 1
B 3 Mg maguesium g ; Solution: The emission occurs when the energy of the hydrogen atom drops from a
i (11 i Al palmiu 9 2 high energy state to a low one. From eq. (2.77), the emission spectrum is
14 Si  silicon - . [
15 P phosphor
16 S sulfur 2 4 s 13.6eV ~ 1
17 Cl chlorine 2 5 P )
18 A argon Filled Filled 2 6 o
19 K  potassium 2 (®) 2 6 1 o 1 2.
20 Ca calcium 2 6 2 =3.288 x10° (1—— |Hz(n =2,3.4,...)
21 Sc . scandium 2 ) 6 1 2 =
22 Ti titanium 2i% 6 ; i
23 V. vanadium ; g 5 1 The emitted photon frequency and wavelength are listed in the following table. These
% S# emamiin 2 6 °5 2 numbers are in excellent agreement with experiments.
25 Mn manganese 5
26 Fe iron i 2 g 5
27 Co cobalt
I 28 N? n?ckcl 2 6 8 2 n vp(n — 1) x 101 Hz Ap(n — 1)(nm)
29 Cu <o 2 6 10 1
30 Zn zinl::pﬂ 2 6 10 2 2 2.466 121.57
3 2.9227 102.57
4 3.8025 97.255
: ¢ ' - g « e . o0 - '
are filled first. Starting with potassium, however, we begin to see deviations from this _ 3.288 91.177
trend. Rather than filling the 3d-orbital, one electron actually fills the 4s-orbital first.
This effect is due to electron—electron interaction SUCh3that the 1errlleregryt_}llzv:;:n£0r'l'ﬁli: Now we are in a position to discuss the total energy of an atom or molecule. The total
same n (for example, 3s, 3p, and 3d have the same n = ) are 1o long iy e ' energy can be approximated as the summation of translational, vibrational, rotational,
change is called the lifting of the degeneracy, and is because the_ 3dleve s ave 'a slightly DT on ey
higher energy than the 4s level. Therefore, the extra electron in potassium wﬂ{ fill the
4s-orbital rather than occupy one of the 3d-orbitals. » B el . E'© — plans | pel | pvib | prot 2.78)
“The filling of the electronic states determines the chemical activity of each atom. If
all orbitals of the same principal quantum number n are filled, the atom is inert because For a monatomic gas, there are no vibrational or rotational energy levels. Although we did
the energy difference to the next level of n is much larger than kg7 (26 meV at room not discuss the translational energy levels much, the particle in a potential well model
temperature). Otherwise, the vacant quantum states within the same principal quantum describes the allowable translational energy levels of an atom or molecule. Paralle] °
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to example 2.1, the translational energy level of an atom (or a molecule) in a three-
dimensional potential well can be expressed as

W (n2  n ng —1.2.3 (2.79)
tans _ | Dx 4 X 4 ) (ng,nypn =123, 45)

where Dy, Dy, D, are the lengths of the potential well in the x, ¥, andfz dlr'ich;;sl,
respectively. Since the mass of an atom is typically much larger than thatth 0 t;:n z]z:ignai
the separations between translational energy levels are very small: Thus the tran s
energy can be considered as a continuous variable and is often simply expressed as

kinetic energy;

rans _ 2 442 2.80
E““"5=5(v§+vy+vz) (2.80)
Comparing egs. (2.80) and (2.79), we see that

s @2.81)

muxy = ED_;;

and this is similar for y and z directions. The left-hand sidfe of eq. (2.81) is momentum
px- The right-hand side, according egs. (2.8) or (1.38), is h/Ay. Thus, €q. (2.81) ;(si
a consequence of the Planck-Einstein relation, eq. (2.12), between momentum an
wavelength.

2.4 summary of Chapter 2

In this chapter, we have introduced the wave—-pajrtich_a duality of elef:u'omagnetlc _rafh-
ation. It was through the work of Planck and Einstein that the particle charactcn:}ncs
of electromagnetic radiation were revealed. Plaflck suggesze.‘d that the eiergg‘ ot?t;
electromagnetic wave at frequency v must be an 1ntz?gra] mulu;;le'of_ E = vﬁﬁ m; ei
further showed that this basic energy unit has particle characteristics, and s; asic
guantum of energy was eventually named photon. 'I‘h‘s rnqmenmr_n and energy relations
between waves and particles are called the Planck-Einstein relations

b _h
E=hv, p=7

On the basis of the wave-particle duality of light, de Broglie _furth.cr suggcsxed .;hhilt
matter has wave characteristics that follow the same P‘lanck—EJustel.r.l rlelanons. his
suggestion led to the development of quantum mechanics. The Schrédinger equation

describes material waves,

W, v
My, + U =i

2m

= o

where ¥, is the wavefunction. The meaning of the wavefunction is that ¥, WF gives t_he
probability that matter will be found at location r and time f. In the quar_mu_n nu-,charn;:cs1
world, things are uncertain and the most probable value of any quantity is calculat

from the operator for that quantity, including its location; momentum, Energy, and 4
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so on. The uncertainties of the location and momentum, and of time and energy, obey
the Heisenberg uncertainty principle

ApAx > h/2and AEAt > h/2

Solution of the Schrddinger equation leads to eigenvalues that are identified as the
(most probable) energies of the system. We have given solutions for the following
potential fields:

1. Free electrons. The free electron energy level is a continuous variable.

2. Particle in an infinite one-dimensional potential well. The particle energies are
quantized and their wavefunctions form standing waves. Research on artificial
guantum structures has become a mainstream research field and has led to many
exciting applications. '

3. Harmonic oscillator. The energy levels of a harmonic oscillator are quantized
according to ’

Evib=hv(n+1 whercu:iﬁ (n=0,1,2,..)
2 2 Y m

The harmonic oscillator represents a wide range of phenomena such as the vibra-
tional energy levels in polyatomic molecules, an electromagnetic field, and atom
vibrations in solids. .

4. Rigid rotor. The energy levels of a rigid rotor are given by

h2 ‘
Ep =22t +1) (forjm| <£,£=0,12,..)

where £ and m are integers. Because there are multiple £ and m values that give the
same energy, and each set of £ and m represents one quantum state, the rotational
energy levels are degenerate. The degeneracy is g(£) = 2£ + 1. The energy sepa-
ration between rotational energy levels is very small. They are typically observed
together with vibrational energy levels.

5. Hydrogen atom. The electron energy levels of a hydrogen atom are

mc} 13.6ev

SRS = -
T 2h%n2 h?

(n>1,n>€+1, and |m| <£,£=0,1,2,..)

where, again, each set of (n, m, £), plus the spin quantum number s, determines
a quantum state. Because the energy level depends on 7 only, the energy levels
are degenerate, the degeneracy being g(n) = 2n2. The electron energy levels in
the hydrogen atom provide a basis for understanding the periodic table and the
chemical activity of atoms.

6. For an atom or molecule, the total energy is the sum of translational, electronic,
rotational, and vibrational energy levels (the latter two are for polyatomic molecules
only). :

.. 7. A photon interacts with matter (absorption or emission) only when the photon

‘ energy and allowable energy levels of the matter satisfy the following relation
g Ephoton = thhoton =Ey— E;
s In addition, we should understand that each wavefunction determines one quantum
state. Electrons also have spin, which cannot be obtained from solving the Schrodinger
equation. The two spin quantum numbers for an electron are s = 1/2 and —1/2. The Pauli

exclusion principle dictates that each quantum state can have a maximum of one electron.
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2.5 Nomenclature for Chapter 2

i separation of variable constant

A wave amplitude o _ :

B rotational constant, Hz; B separation of_ v:linal?le cc;:::zr:ltl g
or undetermined coefficient in Ax standar::(l1 de\lllz::uon inx
the wavefunction expgf:tet vaelrlator

¢ constant in eq. (2.70), Nm? Vz gral ;le; :))pemt{)r

D width of potential well, m v Lap ace op S

e charge per electron, C £p electrical p;:rm_l ) \r1_ );
force, N ‘ vacuum, C2 N~''m -

. d(;rger,leracy KB Boltzmann constant, J K~

8

h Planck constant, J s _ A ¥vavelengﬂls, —rrll

h Planck constant divided by 27, Js v requency, Py

H system Hamiltonian, J @ vectoxi wavc;,wc:3 ol

I moment of inertia, kg m’ ®, complex w

J particle flux, m™2 ™" N7 wavefunction L

k magnitude of wavevector, mfl @ angular frequency, rad s

k wavevector, m~! . Q operatqr‘

K spring constant, N m! ) expectation value

£ quantum number o

m mass; kg; quantum number Subscripts

n quantum number s -

2 magnitude of the momentum, 0. equlh_brmm position
kgms™! f Fermi level

P momentum operator, kg m 57! £ quantum numgzi

ro effective distance between m quantum num
two atoms n quantum number

ial di igi hoton

r radial distance from origin, m 4 phot

r position vector s spin quantum number

s spin quantum number t total

t time, s ‘ - v vacuum level

U system energy or potential energy, § X, ¥,2 Cartesian components

x,y,z Cartesian coordinates i

X separation of variable component Superscripts

¥y unit vector in y direction b i

Y separation of variable component; unit vector _
sphericn!'harmonics | * complex conjugate
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2.7 Exercises

2.1 Planck-Einstein relations. (a) An argon laser emits light at 514 nm and at a power
of 1 W. Calculate (1) the frequency of the photons in Hz, (2) their wavelength,
expressed as a wavenumber, (3) the energy of each photon, (4) the momentum
of each photon, and (5) the number of photons generated per second.

(b) If the photons are completely absorbed by a 1 mm? surface, calculate (1) the
pressure exerted on the surface by the photons, and (2) the heat flux generated
by the photon absorption.

2.2 Transmission electron microscope. Electron beams are used to study the atomic

 structure of crystals, as in the transmission electron microscope (TEM). The
resolution of the microscope dépcnds on the energy of the electrons, which
determines the corresponding wavelength of the electrons. The minimum focal
point of the electron beam depends on its wavelength. Determine the electron
. wavelength if they have an energy of (a) 100 keV and (b) 1 MeV.

2.3 Spring constant and interatomic distance between H atoms in Hy. The funda-
mental vibrational frequency of the Hy molecule is 4401 cm ™! and the rotational
constantis 59.32 cm™!. Estimate the effective spring constant and the interatomic
distance between the two hydrogen atoms. What are the photon wavelength and
frequency corresponding to the vibration transition?

2.4 Expectation value of Hamiltonian. Prove that E in the separation of variables of
_ the time-dependent Schrddinger equation represents the system energy; in other
" words, prove eq. (2.28). :
, 2.5 Farticle Flux. Derive the material wave continuity equation (2.30) and the flux
expression (2.31). : , )
2.6 Photon emission wavelength. Calculate the emitted photon wavelength if an

electron falls from the n = 2 state into n = 1 state inside an infinite potential,
quantum well of width D = 20 A.
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= 2 state of an electron inside aninfi-

L i inciple. Forthen
2.7 Heisenberg uncertainty principle  peateup bt - Z‘h/z

nite potential well, prove that the Heisenbe

is satisfied. e
2.8 l.S'Sps::ng constant of C—O bonds. The absorption by a CO molecule at 5.61 pm

is its fundamental vibrational mode. Determine the effective spring constant of

C—O bonds.

2.9 Vibrational-rotational energy levels. The fundamental vibrational frequency of

. =1 :
the H, molecule is 4401 cm ™" and its rotational constant is 59.32 cm™". D‘etsrl
mine the photon emission wavelengths due to combined vxhranonalfrotatlona

i ibrational mode. : &
modes in Hz near the fundame:}tal vibrationa _
2.10 Electron reflection. As shown in figure P2.10, an elec_;tronéof ;ﬁlerflzcﬁ c‘;l(i;‘g:i
" from left to right encounters a potential barrier of height 8. The
can be reflected or transmitted. : .
(a) Show that the proper forms of the incoming,
functions are

reflected, and transmitted wave

;= Ae—i@—® p = Btz v, = Ce—i(w,t_kzx)7
| M ’ ,

JZmE _ ’2m (E —9)
k= 2 and k2 = o

to be determined from the interface cond?tior}s atx =0.
— 0, the wavefunction and its first derivative must be
ditions, derive expressions for B/A and C/A.

respectively, where

and A, B, C are constants
(b) At the interface x
continuous. Using these con

Potential
U=3%
Electron
§
U=0 B

Figure P2,10 Figure for problem 2.1‘0.

ratio of the reflected particle flux divided

ivity R is defined as the :
(c) The reflectivity K 15 o iy 7.

by the incoming particle flux, and similarly
Jr Jr

R J,ian 7

Derive expressions for R and T.

(d) For E = 12 eV and § =

transmissivity. ‘
(e)For E =1¢eV and
show that ¥; is not zero. This nonzero wav

. flux is called an evanescent wave. _
2.11 Electron tunneling through a p?rentm.
in region I encounters a potential barrier 0

1 eV, calculate the elect.\jon‘\ reflectivity and

-8 = 1.2 eV, show that the transmissivity T is zero, and alF,o
efunction that does not carry a material

| barrier. An electron moving from 'lef{
f finite width D and barrier height
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Electron

—e . )
0 D x  Figure P2.11 Figure for problem 2.11.

8 (tegion II), as shown in figure P2.11. The electron has a certain probability
of traversing the potential barrier and entering region III. The objective of this
exercise is to derive expressions for the electron reflectivity and transmissvity.
To complete the derivation, go through the following steps: .

(a) Solve the Schridinger equation for each region. Identify which parts of the
solution represent the incoming, reflected, and transmitted waves.

(b) Use the continuity of the wavefuction and its first-order derivative at the two
interfaces to relate the solutions in the three regions.

(c) Use the definitions of reflectivity and transmissivity that are discussed in
problem 2.10 to derive expressions for the electron reflectivity and transmissivity
through the barrier region. .

(d) Examine the solutions and show that even if the incoming electron energy
E is lower than the Barrier height 8, there is still a nonzero probability that the
transmissivity is not zero. The phenomenon that an electron with energy lower than
the barrier height can transverse the barrier is called tunneling.

2.12 Electron energy quantization in a potential well of finite barrier height.

(2) Derive expressions determining the electron energy levels in a potential well

surrounded by a barrier of finite height, as shown in figure P2.12.

Electron

U=0

|+——] Figure P2.12 Figure for problem 2.12.

(b) For D = 50 A, determine the first three energy levels for V = 0.5 eV
and 1 eV.

. 2.13 Electron energy states in a quantum dot. Determine (a) the energy levels of an
electron in a cubic quantum dot of length D, assuming an infinitely high potential
barrier around the cube, (b) the allowable energy levels for D = 100 A, and

| (c) the degeneracy of the first four energy levels.

2.14 Electron energy states in a potential wire. Determine (a) the energy levels of an
electron in a two-dimensional square box of length D, assuming an infinitely high
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potential barrier around the box, (b) the allowabie energy levels for D =50 A,
levels.
and (c) the degeneracy of the first four energy‘
2.15 Wave function in a one-dimensional potential well. P}ot the most probzabée
electron distribution in a one-dimensional infinite potential well for n = 11, o8
2.16 Degeneracy of electron energy levels ;n a hydrogen atom. Prove that the electron
degeneracy in a hydrogen atom is 2n~. . ‘ :
2.17 Translational energy level. A 10 cm?® box contains a Hp molecille at 300 K.
(a) Estimate the average translational energy of the Hy molacu.e. o
(b) How do the first few translational energy levels compare with «xpT?
(c) Can you think about a way to count the degeneracy of the translational energy
levels corresponding to this average energy?

3

Energy States in Solids

‘g. The previous chapter introduced the energy levels in simple potential fields, such as
i quantum wells, harmonic oscillators, atoms, and molecules, In this chapter, we will
discuss gnergy levels.in.solids, We focus our discussion on Single.crystals, which are
the simplest form of solids because the atoms are re; :  As we will see,
tal periodicity pl A4YS 3 central role iQ determinine the. enerey levels. So we will start

by discussing crystal structures, including lattices and the potentials binding the atoms
into a crystal. Since atoms in solids are packed closely, thetelection. wavefunctions
ions and, correspondingly, new

EINer S0 that the yibration

electron energy levels. The intera

10E e Crys

- normal modes extending over the crystal and the basic energy quantum
of each normal modelsﬁ?da phonon, in the same way of that the basic energy quantum
: ! zd.a.photon. Each electron and phonon wavefunction
is characterized by a frequency (or energy) and a wavevector. Il;‘gmlgon;m&@mn
the energy and the wavevector is called the dispersion.sela ion, which plays a central
role in determining the properties of the crystal. We limit mathematical derivations to
the dispersion relations of electrons and phonons in one-dimensional periodic structures
and explain the energy levels in real crystals without a more detailed mathematical
derivation, because the dispersion relation in a real crystal can be appreciated on the
basis of a sound understanding of the behavior of a one-dimensional periodic system.
The encrgy levels in crystals are highly degenerater A very,usoful int
Account the degeneracy of the gnergy staes is the density of states, which will be used_-m
Tepeatedly throughout the book and should be mastered.

allecd th DEESION fe

7

Desoual aad cou e smecelas! c,&lc*.uLc_LmL&f ¥



-

=T g i h

i
o

S o

S

G LAt e - Lo

© 78 NANOSCALE ENERGY TRANSPORT AND CONVERSIO?

3.1 Crystal Structure

i i fodi .Todescribea
is a three-dimensional periodic arrangement of atoms i
- il aperiodic array of mathematical points that replicate

atomless lattice— oints that ref
et crystal. Every point in the lattice is identical to

the inherent periodicity of the actual . / P! : .
other points. To form an actual crystal, a basis consisting of one or several atoms (or a

molecule) is attached to each lattice point, i.e.
ms!al = lattice - basis

The exact position of the basis relative to the lattice po_int _is not importan;l. as l(;n;gﬁ as
the relative position between the basis and the lattice pm.nt is the same_for 1 tht_‘. latt ';;
points. Many crystals have the same lattice structure; in fact, then?_ ma&a_hml imite

e Tattioe tynes. Thus, we will first discuss the description of lattices in

= LVDG : : i :
introduction of the concept of reciprocal lattice, which is the

lattice. The binding between atoms in real crystals

(3.1)

real space, followed by an
Fourier transform of the real space
will then be discussed.

3.1.1 Description of Lattices in Real Space
Consider a two-dimensional lattice as shown in ﬁgur.e 3.1. From a mathematical ;;cnnt
of view, the location of each a point can be described by a vector. Because o
periodic arrangement of lattice points, we can choose 2 Dasic S¢

thegrin:i[i it CLoES 0 COonsiTug ¢ ] ; g ;
dimensional lattice, a; , ap, a3 are primitive lattice vegtors if, from any point, we could

(s |s" ]

0 °
0 o

© o
A Primitive
© Unit Cell ©
- e

N bﬁ“ﬁ-—l T:D sl % (X TRIALEBUASE CRAN.

—
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reach all other lattice points by a proper choice of integers through the following
construction

[R=may +may +n3a;] (a5, n3 coverallintegers) - (3.2)

The magnitudes of a;, ap, and a3 are called the lattice constants. A lattice constructed
according to eq. (3.2) is often called a Bravais lattice. Primitive lattice yectors are not
unigue: We have drawn two sets of primitive lattice vectors in figure 3.1 with primitive
unit vectors denoted by a; and aj. The other set of vectors, a] and a, are not primitive
lattice vectors because we cannot use them to construct all other lattice points by a
two-dimensional version of eq. (3.2). For example, we cannot reach point 1 through any
linear integer combination of a} and aj. :

Aprimitiveunitcellis the paralielepi ¢
is only one lattice point (equivalently speaking); it cel 2
of the four lattice points in the two parallelograms formed by the two sets of primitive
Jattice vectors in figure 3.1 is shared by four unit cells and thus the number of equivalent
lattice points in each parallelogram is one. These are thus primitive unit cells. On the
other hand, the shaded rectangle formed by a} and a/ is not a primitive unit cell because
there are two lattice points in such a rectangle: the center point plus the four corners, each
of the latter being shared by four cells. Because the choice of primitive lattice vectors
is not unique, there can be different ways to draw a primitive unit cell, as shown by the
two examples in figure 3.1. One method to construct a unit cell u_n_iﬁlig_l)‘r_ig_tygm

Seitz cell (see figure 3.1), which is constructed by connecting all the neighboring points
surrounding an arbitrary lattice point (as shown by the solid lines in %gure 3.% ) and
drawing the bisecting plane (shown by dashed lines in the figure) perpendicular to each
conng_c_-l.ri_og line, The smallest space formed by all the bisecting planes is a Wigner—Seitz
cell, as indicated in the figure.

Sometimes, it is more convenient to describe a lattice by the conventional unit.ce
For example, in figure 3.1, the rectangle formed by ) and a, is more convenient than
the parallelogram formed by the primitive lattice vectors. This unit cell has two lattice
points and is called a conventional unit cell. The crystal can also be constructed by
repeating such a cell.

A general unit cell in the three-dimensional space is designated
vectors and the three angles formed between them. In the most general case, these
three lattice vectors are of different lengths and the three angles are all oblique; as
shown in figure 3.2(a). This lattice is called a triclinic lattice and does not have much
symmetry. The symmetry of a lattice is often characterized by the symmetry operations,
which include rotation of the unit cell around a fixed lattice point, refection of the unit

PELPIA]

itive unit cells For example, each

cell along a specific plane, and inversion with respect to a lattice point: A fundamental

‘:}! . Tequirement on the lattice is that one can fill the entire space by placing a primitive
“ (o) unit cell at every lattice point. This requirement puts a limitation on the symmetric
it Unit Ceuo ) . operations of a lattice. For example, the allowable rotational symmetry operations are
(=] © 2w, w, 27/3, 27/4, and 27/6. No lattice, however, can have 2x/7 or 27/5 rotational

° (+] © © symmetry.* Given these conditions, it turns out that there are 13 other types of lattice

that have special symmetry operations on top of the 7 and 27 rotational symmetry of
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Figure 3.1 A two-dimensional lattice. Different choices of primitive lattice vectors ag and a3 and

; UL ; : e
primitive unit cells (gray areas) are possible. Tht'; \N’igne;r—Se:lz Ezgu:;pt;?;:i ::;2 ]::“oi:: "\;{om
i imiti it cell, Vectors a; and a, are no
uniquely construct a primitive unit ceil. 1 2 _ »
and the shaded area is not a primitive unit cell. This area is, however, often used due to its regu

shape and is called a conventional unit cell.

1 *Some guasicrystals can have five-fold symmelry patterns but they do not satisfy the definition of a crystat
discussed in this section (Kittel, 1996).




